

2019 FORCEMAN RIDGE WASTE MANAGEMENT FACILITY ANNUAL REPORT

June 2020

Prepared for:

British Columbia Ministry of Environment & Climate Change Strategy EnvAuthorizationsReporting@gov.bc.ca

Prepared by:

Regional District of Kitimat-Stikine Suite 300 - 4545 Lazelle Avenue Terrace, BC V8G 4E1

Forceman Ridge Waste Management Facility Overview

The Forceman Ridge Waste Management Facility (herein referred to as the Forceman Ridge WMF) opened in November 2016 and is owned and operated by the Regional District of Kitimat-Stikine (Regional District or RDKS). It is located 30 km south of the City of Terrace at 3112 Highway 37, access is via the Chist Creek Forest Service Road.

Forceman Ridge WMF is responsible for the management of municipal solid and liquid waste generated from commercial and residential sources in the Greater Terrace area in accordance with the Regional District Kitimat-Stikine Solid Waste Management Plan (1995). The majority of solid waste received is consolidated at the Thornhill Transfer Station, also owned and managed by the Regional District, and hauled to Forceman Ridge WMF for final disposal.

Landfill operations are regulated by the Ministry of Environment's Operation Certificate MR-17227, issued in November 2008, most recently amended in September 2019. Operations are conducted in accordance with the Forceman Ridge Landfill Design Operations and Closure Plan prepared by Sperling Hansen Associates in 2017.

The footprint for the entire Waste Management Facility is 53.5 ha in size; this area includes buffer reserves. The facility contains a compost facility, septage receiving facility, five stage leachate treatment and detection system, and an engineered landfill. Currently the landfill filling is in Phase 1A.

Figure 1 Overview Forceman Ridge Waste Management Facility

The landfill is double lined with a high-density polyethylene and clay matting composite with leachate capture. Captured leachate is pumped to the 90,000 m³ equalization pond. Leachate is pumped from the equalization pond to the aeration pond, which has 30 diffusers for bio-oxidation treatment. After treatment in the aeration pond, leachate is pumped to the sedimentation pond, which allows for settling of biomasses and any suspended solids. Treated leachate is then sent through a sand filter and discharged at the phytoremediation orchard. The details of the Facility water quality monitoring program, including groundwater, surface water, and leachate results will be discussed in a document prepared by Sperling Hansen Associates and can be found in Section 2. An overview of the Waste Management Facility is shown in Figure 1.

Landfill gas management has not yet begun at the landfill. A landfill gas generation model is currently being developed to estimate gas volumes.

Table of Contents

Ford	eman Rid	ge Waste Management Facility Overview	. 1
1.0	Introd	uction	. 4
2.0	Waste	Disposal	. 4
2	.1 Solid	d Waste Disposal	. 4
	2.1.1	Garbage	. 5
	2.1.2	Asbestos	. 6
	2.1.3	Construction and Demolition	. 6
	2.1.4	Industrial Refuse	. 6
	2.1.5	Land Clearing Debris	. 6
3.0	Diverte	ed Materials	. 7
	3.1.1	Clean Wood Waste	. 7
	3.1.2	Contaminated Soils – Suitable for Cover	. 7
	3.1.3	Extended Producer Responsibility Products	. 7
4.0	Organi	cs Collection and Compost Facility	. 7
	4.1.1	Septage	. 8
5.0	Enviro	nmental Monitoring Report	. 8
6.0	Wildlif	e Occurrences and Observations	. 9
6	.1 Bird	Control	. 9
7.0	Landfil	l Gas Collection	. 9
8.0	Summ	ary	. 9
Figu	re 1 Over	view Forceman Ridge Waste Management Facility	. 1
Tab	le 1: Wasto	e Discharge Quantities for 2019	. 5

1.0 Introduction

This annual report covers the period from January to December 2019 and has been prepared to fulfill the requirements of the Forceman Ridge Landfill Operational Certificate MR-17227.

Issued by the Ministry of Environment in November 2008, and amended in September 2019, the Operational Certificate authorizes the discharge of municipal solid and liquid wastes and outlines the criteria for environmental and human protection at the Forceman Ridge WMF.

This report meets the requirements in Section (14.2) of the Operational Certificate by providing the following information:

- Total volume or tonnage of waste discharged to the landfill during 2019;
- Total volume or tonnage of waste composted during 2019;
- Total volume or tonnage of waste recycled and diverted during 2019;
- Total volume of sewage waste collected in the septage receiving facility during 2019;
- Total volume of leachate generated by the landfill during 2019;
- Occurrences or observations of wildlife attempting to access the facility; and
- The results and evaluation of all the monitoring programs has been undertaken by Sperling Hansen Associates, and is shown in Section 2.

2.0 Waste Disposal

The Forceman Ridge WMF serves residents and business in the Greater Terrace area. In 2019, the population that utilized the landfill was approximately 19,500. The facility also accepts waste from industrial sources and contaminated soils from outside the designated service area; these wastes are charged a 25% surcharge on tipping fees.

2.1 Solid Waste Disposal

Solid waste is typically hauled to the Thornhill Transfer Station, sorted, compacted and hauled to the Forceman Ridge WMF. In 2019, a total of 11,128 tonnes of municipal and industrial solid waste including; garbage, construction and demolition waste, and various types of controlled waste was disposed of in the landfill within Phase 1A, lifts 1 and 2. The annual totals from January through to December 2019 of solid waste received at the Forceman Ridge WMF are shown in Table 1. Tonnages for diverted wastes are also included in the table.

Table 1: Waste Discharge Quantities for 2019

Material	2019 Quantity (tonnes)
Waste Discharge	
Refuse received from Thornhill Transfer Station	7,754
Construction and Demolition waste received from Thornhill Transfer Station	527
Controlled Wastes – Direct Haul to	
Forceman Ridge WMF	
Asbestos	111.1
Construction and Demolition	2,366.0
Industrial refuse	369.5
Land Clearing	0.7
Diversion	
Organics received from Thornhill Transfer Station	1,453.2
Industrial Organics	8.6
Septage as received - prior to dewatering**	714.2**
Dewatered Septage Solids to compost	52.7
Contaminated Soils	1,789.9
Clean Wood Waste accepted as	
Controlled Waste or received from	64.3
Thornhill Transfer Station	
Concrete	24.7
Asphalt Roofing Shingles	4.3
Total landfilled as waste	11,128.3
Total diverted materials	4,111.9

Note: *Cover and road construction materials are not included in the waste discharge quantities.

2.1.1 Garbage

Garbage is defined as discharged materials, substances, or objects, not including Controlled Wastes (animal carcasses weighing more than 50 kg, asbestos, contaminated soils, construction and demolition or land clearing wastes over five cubic metres, clean soils, broken concrete, broken asphalt, ash from incinerators, and septage), Restricted Wastes (metal, organics, and recyclable materials), or Prohibited Wastes (hazardous or radioactive waste, slaughter waste, smoldering or flammable material, explosive or highly combustible materials, broken concrete or asphalt 300 millimeters in diameter or greater, Extended Producer Responsibility (EPR) Materials, tires, and cardboard and paper products, whether or not they fall within the definition of EPR materials). Garbage is disposed of in the landfill.

^{**}Tonnage prior to dewatering not included in total diverted materials; dewatered septage solids are processed separately through the compost facility to be used as landfill cover.

Garbage is consolidated and compacted at the Thornhill Transfer Station and hauled to Forceman Ridge WMF.

In 2019, 11,128.3 tonnes of garbage was disposed of in the landfill.

2.1.2 Asbestos

Asbestos containing waste generated within the service area from residential, commercial, and institutional customers is accepted in the landfill through the Controlled Waste application process. Asbestos containing waste is delivered to the landfill using approved containment methods and is accepted by scheduled appointment for immediate burial in the landfill.

In 2019, 111.1 tonnes of various forms of asbestos waste was disposed of in the Forceman Ridge landfill.

2.1.3 Construction and Demolition

Construction and demolition material is mainly wood waste, with soft construction materials like dry wall and insulation. It is defined as, waste produced from the construction, renovation, and demolition of buildings and other structures, but does not include waste containing or contaminated with asbestos, creosote, polychlorinated biphenyl (PCBS) or any other Hazardous Waste.

In 2019, 2,893 tonnes of construction and demolition waste was disposed of in the Forceman Ridge landfill.

2.1.4 Industrial Refuse

Industrial refuse is garbage that comes from industrial sources outside of the Terrace Solid Waste Service Area, but within the Regional District; the majority of the industrial waste in the Terrace Solid Waste Service Area is generated from construction and industrial work camps related to liquified natural gas.

In 2019, 369.5 tonnes of industrial refuse was disposed of in the Forceman Ridge landfill.

2.1.5 Land Clearing Debris

Land clearing debris is defined as waste produced from the clearing of land for development, other than Organic Materials (vegetative matter, tree branches under 75 millimeters, and compostable structural wood waste), and includes trunks, stumps, tree branches 75 millimeters in diameter or greater, tops and whole trees. Due to presence of rock and gravel within this material, this is often deposited in the landfill.

In 2019, 0.7 tonnes of land clearing materials was disposed of in the landfill.

3.0 Diverted Materials

Diverted materials are collected utilizing several methods depending on the material type and/or the producer source: collected at the Thornhill Transfer Station, collected in curbside pick-up, collected by commercial haulers, or deposited at designated Extended Producer Responsibility Stewardship Depots.

3.1.1 Clean Wood Waste

Clean wood waste is considered any wood product that has not been treated or painted. Clean wood is segregated, and either burned as prescribed in the Operational Certificate or chipped and used as hog fuel in the Compost Facility.

In 2019, 64.3 tonnes total of clean wood waste was collected and diverted.

3.1.2 Contaminated Soils – Suitable for Cover

Contaminated soils are defined as soils, that contain contaminants in concentrations less than "hazardous waste" as defined by the Hazardous Waste Regulation.

In 2019, 1,789.9 tonnes was collected and utilized as cover material on the landfill.

3.1.3 Extended Producer Responsibility Products

The Regional District does not track the volume of extended producer responsibility (EPR) products that residents self-haul to one of the many depots in the Terrace area. The City of Terrace provide curbside collection of Printed Paper & Packaging (PPP) for residents. The Regional District also provides curbside collection of PPP for residents serviced by the Thornhill Transfer Station and Forceman Ridge WMF.

4.0 Organics Collection and Compost Facility

Since November 2016, Forceman Ridge WMF has operated a compost facility for residential, commercial, and industrial organics in the Terrace area. Organics are collected via curbside for residential waste, or residents can self-haul to the Thornhill Transfer Station. Organics collection for

businesses and industry is done via commercial haulers. Collected organics are all taken to the Thornhill Transfer Station, consolidated and hauled to the Forceman Ridge Compost Facility. The City of Terrace operates a yard and garden waste collection for windrow composting from May to September and utilizes the finished product in municipal parks and community garden areas.

The Forceman Ridge Compost Facility utilizes a Gore® composting process to produce Grade A compost. The facility hosts three windrow stations inside a Mega-Dome®, and two curing bays outside. Collected organics are mixed with hog fuel, which is collected from a local sawmill or from chipping diverted untreated and unprocessed wood residue. Temperature, oxygen, and moisture levels are monitored during the process. It takes approximately eight weeks to generate the Grade A compost material. Finished product is slated to be used as final cover material to close the Thornhill Landfill, and to close phases of the Forceman Ridge Landfill. Leachate from the compost facility is collected and stored in separate containment near the compost facility. The collected leachate is used for additional moisture for the compost; any surplus of leachate is sent through the leachate treatment process.

In 2019, the Forceman Ridge WMF diverted 1,461.83 tonnes of organics to the Compost Facility.

4.1.1 Septage

Septage is disposed of directly in the Forceman Ridge Septage receiving facility. The facility has two lagoons available for disposal. Liquid from dewatering is treated in the leachate treatment system. Septage is defined as septic tank pumpage and treated sewage sludge, but does not include Other Sewage Wastes (wastewater, sewage or slurry, including catch basins, oil water separators, or shop floor drains).

In 2019, 714.2 tonnes of septage was disposed of in the septage facility. Once the septage lagoons are full, the dewatered solids are mixed with wood chips and the resulting product is placed in one of the compost bays. In 2019, 52.7 tonnes of dewatered septage was transferred to the Compost Facility for processing. The end composte product will be utilized as final cover material for the landfill.

5.0 Environmental Monitoring Report

Environmental monitoring for the Forceman Ridge WMF was conducted by a Regional District of Kitimat-Stikine Environmental Technician, following Ministry of Environment and Climate Change Strategy, 2013 British Columbia Field Sampling Manual. All in-situ and laboratory data for groundwater, surface water, and leachate estimates have been analyzed and reviewed by Sperling Hanson Associates. The complied data, interpretation, and recommendations can be found in Section 2.

6.0 Wildlife Occurrences and Observations

The Forceman Ridge WMF is located in an area with bears, wolves, coyotes, several species of birds of prey, and many other species of mammals that may attempt access to the facility. To prevent wildlife from gaining access the entire facility is enclosed in a 2.1-metre-high composite electrified fence. To prevent vectors from gaining access to the landfill active face, the Revelstoke Iron Grizzly (RIG), an alternative daily cover, is positioned each day to cover all waste. Soil from site is used as intermediate cover.

Facility operators are required to inspect the fence line daily, testing for proper voltage, proper tension on fence stands, overall condition of the fence, and signs of wildlife activity. The results of the inspections are recorded on the Daily Operation Inspection Forms.

There were no mammalian wildlife incidents or encounters observed during 2019 at the Forceman Ridge WMF. There was minimal vector activity from birds, including raptor species (bald eagles), and corvid species (crows and ravens).

6.1 Bird Control

Birds, such as ravens and crows, are a nuisance at landfill sites, as they can scatter litter into the surrounding environment. Bird control at Forceman Ridge WMF is based on thorough and complete cover of waste. The active face is only exposed when a load of waste is delivered to the landfill. In between loads, the active face is covered with an alternative daily cover, the Revelstoke Iron Grizzly (RIG) plates.

7.0 Landfill Gas Collection

Landfill gas collection and flaring has not been initiated at the Forceman Ridge WMF. The Forceman Ridge site is now in the planning and design stage.

8.0 Summary

During 2019, 11,128.3 tonnes of total of refuse including garbage, construction and demolition materials, and controlled waste was disposed of in the Forceman Ridge landfill, and 4,111.9 tonnes of materials were diverted from the landfill. These materials include; 1,461.8 tonnes of organics, 52.7 tonnes of dewatered septage, 1,789.9 tonnes of contaminated soils, and 64.3 tonnes of clean wood.

There were no mammalian wildlife incidents or encounters observed during 2019 at the Forceman Ridge WMF. There was minimal vector activity from birds, including raptor species (bald eagles), and corvid species (crows and ravens).

Document prepared by:

Megan Haley, P. Chem. Solid Waste Manager Regional District of Kitimat-Stikine 300 – 4545 Lazelle Avenue Terrace, BC V8G 4E1 mhaley@rdks.bc.ca Document reviewed by:

Récole Lorois

Nicole Lavoie, B.Tech.
Solid Waste Services Coordinator
Regional District of Kitimat-Stikine
300 – 4545 Lazelle Avenue
Terrace, BC V8G 4E1
nlavoie@rdks.bc.ca

Section 2 Environmental Monitoring Report

Forceman Ridge Waste Management Facility 2019 Annual Water Quality Monitoring Report - FINAL -

PREPARED FOR: REGIONAL DISTRICT OF KITIMAT-STIKINE
PREPARED BY: SPERLING HANSEN ASSOCIATES

June 23, 2020

PRJ20009

- Landfill Services
- Land Reclamation
- Corporate Management
- Groundwater Hydrogeology

- Landfill Engineering
- Solid Waste Planning
- Environmental Monitoring
- Landfill Fire Control

June 23rd, 2020 PRJ20009

Mr. Steve Prouse Acting Manager, Works and Services Regional District of Kitimat-Stikine Suite 300, 4545 Lazelle Avenue Terrace, B.C., V8G 4E1

Dear Mr. Prouse,

RE: Forceman Ridge Waste Management Facility 2019 Annual Water Quality Monitoring Report

Sperling Hansen Associates (SHA) is pleased to provide you with the Forceman Ridge Waste Management Facility 2019 Annual Water Quality Monitoring Report. This document reports on the site conditions, groundwater and surface water quality, leachate discharge characteristics as well as the monitoring program for 2019.

If you have any questions regarding this report or require any further information, please do not hesitate to contact me.

Yours truly,

SPERLING HANSEN ASSOCIATES

Carly Wolfe, EIT
Bioresource Engineer

CONFIDENTIALITY AND © COPYRIGHT

This document is for the sole use of the addressee and Sperling Hansen Associates Inc. The document contains proprietary and confidential information that shall not be reproduced in any manner or disclosed to or discussed with any other parties without the express written permission of Sperling Hansen Associates Inc. Information in the document is to be considered the intellectual property of Sperling Hansen Associates Inc. in accordance with Canadian copyright law.

This report was prepared by Sperling Hansen Associates Inc. for the account of Regional District of Kitimat-Stikine. The material in it reflects the best judgment of Sperling Hansen Associates Inc. in the light of the information available to it, at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Sperling Hansen Associates Inc. accepts no responsibility for damages, if any, suffered by third party as a result of decisions made or actions based on this report.

EXECUTIVE SUMMARY

Sperling Hansen Associates (SHA) was retained by the Regional District of Kitimat-Stikine (RDKS) to prepare a 2019 Annual Water Quality Monitoring Report for the Forceman Ridge Waste Management Facility, which includes the Forceman Ridge Regional Landfill. This report details a review of the site conditions, groundwater and surface water quality monitoring results, groundwater flow analysis and leachate discharge characteristics for the year of 2019, as regulated by the Operational Certificate (OC) 17227, last amended on September 19, 2019.

Analytical results in this report have been compared to the appropriate guidelines established in the OC. Groundwater results were compared to the Contaminated Sites Regulation (CSR) for Drinking Water (DW). Surface water guidelines were not specified in the OC but the results were compared to the British Columbia Water Quality Guidelines (BCWQG) for Aquatic Life (AW). Leachate data was compared to the OC specified discharge criteria. Lastly, soil guidelines were not specified in the OC but the soil data was compared to the CSR soil standards for DW and AW.

The groundwater monitoring program includes four groups of monitoring wells: 1) background wells for establishing uncontaminated ground water condition, 2) early warning wells to determine early signs of leachate impact, 3) compliance wells for regulatory compliance, and 4) groundwater flow direction wells for establishing groundwater flow conditions. Surface water samples were collected at five surface water monitoring locations at Onion Lake, Clearwater Lakes and the streams that drain these water bodies. In general, post landfill results for groundwater and surface water quality are similar to prelandfill results, indicating no discernable impact from leachate at these locations.

The groundwater flow velocity for the landfill was calculated to estimate the time required for leachate leaving the existing landfill to reach the down gradient environment. A porosity of 0.4 was selected for the soil. The porosity assumes the material is homogeneous. The resulting velocity is 1.5 meters per day which equates to a travel time of 4 years for groundwater to travel the 2.2 km from the edge of the Landfill footprint to Upper Clearwater Lake. However, this only serves as a rough estimate and does not consider localized soil stratigraphy or varying hydraulic conductivity across the site. Furthermore, these limitations also apply to areas outside the Landfill borders with the addition of varying flow depth.

The leachate monitoring plan is to confirm discharge compliance at the discharge compliance point, as specified by the OC. Sampling results indicate that leachate is highly diluted and treated by the time it reaches the discharge point. However, exceedances of the OC criteria were noted for iron at the April, May and August sampling events. Once the RDKS received the water quality data from the lab indicating the initial exceedance in April, they re-circulated leachate from the sand filter to the EQ Pond until iron levels were below the OC criteria. No leachate was discharged until water quality results were under the OC requirements. During the July sampling event, iron also exceeded the OC criteria and leachate was recirculated until levels were below the OC criteria. Other than the iron exceedance, all sampling parameters were below the OC discharge criteria at the compliance point (F5) throughout 2019.

Phytoremediation soil samples were taken once in 2019 to establish background soil conditions prior to leachate discharge, as stipulated by the OC 17227. All results are compliant with the criteria and did not show signs of metals accumulation or excessive salinity in the phytoremediation soil.

The total volume of leachate discharged for the 2019 year was estimated using recorded pump hour data from Pump Station 5 and the pump curve for Pump #5. Discharge occurred from May 31, 2019 to September 26, 2019 and the discharge was stopped and re-circulated temporarily from July 27, 2019 to August 6, 2019. As the system does not currently have a pressure gauge or a flow meter, a number of assumptions were made to estimate the total volume of leachate discharged for the 2019 year. In 2019, the calculated volume of leachate discharged onto the phytoremediation area was estimated to be 77,964 m³, with a maximum daily discharge rate of 1,951 m³/day and an average discharge rate of 661 m³/day over the discharge period. It should be noted that some of the discharge rates exceeded the OC criteria, as the OC states that the maximum authorized rate of discharge shall be 609 m³/day and the average rate of discharge shall not exceed 400 m³/day over the discharge period. SHA recommends that a pressure gauge or flow meter be installed just after Pump #5 for more accurate readings in the future. SHA also recommends that pump records be preserved and checked periodically to make sure that the data being recorded makes sense and is in compliance with the OC. If any exceedances or anomalies are recorded, an immediate measure needs to be taken to make necessary adjustments to be in compliance.

Overall, environmental monitoring results indicate that the Landfill is not having any discernable impact on the surrounding environment. As 2019 is only the third year that the landfill was in operation, it is not viable to establish long term water quality trends at this time.

SHA recommends that the following measures be taken:

- Continue the groundwater, surface water, and leachate monitoring program as per the OC.
- Install pressure gauge or flow meter after Pump #5 and ensure that pump data is recorded accurately. SHA understands that the RDKS has ordered a flow meter.
- Ensure that one duplicate sample is collected during each sampling event from one of the discharge points.
- Continue monitoring the iron levels in leachate at the compliance point (F5) to ensure that they do not exceed the OC discharge criteria.
- pH, Redox Potential eH, conductivity, total iron, and dissolved iron samples should be collected at key locations along the leachate treatment chain at raw leachate, raw compost, EQ Pond, Aeration Pond, Sedimentation Pond and Sand Filter discharge locations on a monthly basis.
- Field samples should be collected using a Hach kit to establish a correlation between field iron concentrations and lab concentrations for leachate.
- Obtain and keep current, the laboratory precision, accuracy and blank quality control criteria for each laboratory analyzed parameters from the analytical laboratory.
- Develop a dynamic groundwater flow model with MODFLOW software to interpret groundwater flow patterns and leachate plume migration. Realistically, this option would only be necessary if leachate impacts were observed.

CONTENTS

Executive Summary	j
Contents	iii
List of In-Text Figures	iv
List In-Text Tables	iv
List of Appendices	iv
1. Introduction	1
2. Scope of Work	2
3. Site Description	3
3.1 Physiography and Topography	3
3.2 Regional and Local Surficial and Bedrock Geology	5
3.3 Applicable Regulatory Criteria	5
3.4 Groundwater	6
3.5 Surface Water	8
3.6 Leachate	9
4. Methods	10
4.1 Field Techniques	10
4.2 Quality Assurance	12
5. Results	12
5.1 Groundwater	12
5.2 Average Linear Groundwater Velocity	13
5.3 Groundwater Quality	13
5.3.1 Background Groundwater Quality	
5.3.2 Early Detection and Compliance Monitoring Well Network	14
5.4 Surface Water Quality	
5.4.1 Surface Water Monitoring Stations	
5.5 Leachate Monitoring	19
5.5.1 Leachate Monitoring Stations and Criteria	19
5.5.2 Leachate Discharge Volume	
5.6 Phytoremediation Soil Sample	
6. Discussion	21
6.1 Groundwater	
6.2 Surface Water	
6.3 Leachate	
7. Quality Assurance and Quality Control	24
8. Conclusions and Recommendations	
9. Statement of Limitations	27
10. References	29
Appendix A: Figures	30
Appendix B: Tables	31
Appendix C: Graphs	
Appendix D: Amended Operational Certificate 17227 (September 19, 2019)	
Appendix E: Borehole Logs	
Appendix F: Leachate Discharge Volume 2019 – Data and Calculations	35

LIST OF IN-TEXT FIGURES

Figure 3-1: Landfill Site Location	4
LIST IN-TEXT TABLES	
	7
Table 3-1: Description of Groundwater Monitoring Locations	
Table 3-2: Description of Surface Water Monitoring Locations	
Table 4-2: 2019 Groundwater Monitoring Events	
Table 4-3: 2019 Leachate Monitoring Events	
Table 5-1: 2019 Groundwater Elevation Summary Table	
Table 6-1: Summary of Groundwater Quality Results 2019	
Table 6-2: Summary of Strace Water Results 2019	
Table 7-1: Summary of Duplicate Sample Non-Compliance 2019	
LIST OF APPENDICES	
Appendix A	
Figure 1: 2019 Topography	End of Report
Figure 2: Forceman Landfill Monitoring Program	
Figure 3: Groundwater Contours (June 2019)	
Figure 4: Leachate Monitoring Locations	
2 18/110 11 20111101111011110111101111011110	or report
Appendix B	
Table 1: Forceman Landfill Monitoring Program	
Table 2: Groundwater Quality Results Sampling Location MW-2	End of Report
Table 3: Groundwater Quality Results Sampling Location MW-13	End of Report
Table 4: Groundwater Quality Results Sampling Location MW-1	End of Report
Table 5: Groundwater Quality Results Sampling Location MW-3	End of Report
Table 6: Groundwater Quality Results Sampling Location MW-15	End of Report
Table 7: Groundwater Quality Results Sampling Location MW-16	-
Table 8: Groundwater Quality Results Sampling Location MW-4	
Table 9: Groundwater Quality Results Sampling Location MW-7	-
Table 10: Groundwater Quality Results Sampling Location MW-8	
Table 11: Groundwater Quality Results Sampling Location MW-9	
Table 12: Groundwater Quality Results Sampling Location MW-5	
Table 13: Groundwater Quality Results Sampling Location MW-10	
Table 14: Groundwater Quality Results Sampling Location MW-12	End of Report
Table 15: Surface Water Quality Results Sampling Location	
SW-01 (Onion Lake)	End of Report
Table 16: Surface Water Quality Results Sampling Location	
SW-02 (Upper Clearwater Lake)	End of Report
Table 17: Surface Water Quality Results Sampling Location	
SW-03 (Lower Clearwater Lake)	End of Report
Table 18: Surface Water Quality Results Sampling Location	
SW-04 (Creek from Onion Lake at FSR)	End of Report
Table 19: Surface Water Quality Results Sampling Location	

SW-05 (Clearwater Creek at FSR)	End of Report
Table 20: Forceman Ridge Precipitation and Leachate Generation Rates	End of Report
Table 21: Leachate Water Quality Results Sampling Location F5, Sand Cyclone	End of Report
Table 22: Phytoremediation Soil Sample Results	End of Report
Appendix C	
Graph 1: Groundwater Conductivity	End of Report
Graph 2: Groundwater Chloride	
Graph 3: Groundwater Dissolved Manganese	-
<u>. </u>	-
Graph 4: Groundwater Dissolved Iron	
Graph 5: Surface Water Conductivity	
Graph 6: Surface Water Chloride	End of Report
Graph 7: Surface Water Total Manganese	End of Report
Graph 8: Surface Water Total Iron	End of Report
Graph 9: Surface Water Total Aluminum	End of Report
Graph 10: System Performance: pH	End of Report
Graph 11: System Performance: Ammonia	End of Report
Graph 12: System Performance: Chloride	End of Report
Graph 13: System Performance: Cadmium	End of Report
Graph 14: System Performance: Iron	End of Report
Graph 15: System Performance: Zinc	End of Report

Appendix D

Amended Operational Certificate 17227 (September 19, 2019)

Appendix E

Borehole Logs

Appendix F

Leachate Discharge Volume 2019 – Data and Calculations

1. INTRODUCTION

Sperling Hansen Associates (SHA) was retained by the Regional District of Kitimat-Stikine (RDKS) to prepare a 2019 Annual Water Quality Monitoring Report for the Forceman Ridge Waste Management Facility (WMF), which includes the Forceman Ridge Regional Landfill (Landfill).

The Landfill is located approximately 30 kilometers (km) south of Terrace and 600 meters (m) off Highway 37 as shown on Figure 3-1. The legal location of the Landfill is described as District Lot 8128, Range 5, within the Coast District.

The Landfill operations began in November of 2016 when the Ministry of Environment and Climate Change Strategy (ENV) approved the Operational Certificate (OC) 17227 issued on November 7th, 2008. A copy of the most recent OC 17227 can be found in Appendix D.

The OC requires that the quality of the constituents within the discharge at the Landfill are typical of municipal solid waste (MSW), the landfill must exclude all un-authorized special wastes, waste oils, automobiles, automobile batteries, appliances containing ozone depleting substances, large animal carcasses, and slaughter house or fish hatchery wastes and by-products. In addition, the OC requires all authorized liquid waste discharge shall be typical of septic tank pumpage, holding tank effluent, sewage treatment plant sludges, and wash water and grit from drain sumps at car and light truck wash facilities parking lots.

MSW residuals are being transferred in Titan end dump trailers from Thornhill Transfer Station to the Landfill's active phase. The Landfill will be expanded progressively in seven phases, each with several sub phases. Currently, only 2.1 Ha Phase 1A is being developed to an elevation of 238 m. Next, Phase 1B will be extended laterally to the west to the same 238 m elevation. Phase 1C and 1D will then be added to the north, followed by Phase 1E and 1F, also to the north. Phases 2 through 7 will then be piggy backed northward to elevation 252 m on top of Phase 1A to 1F.

Protection of groundwater resources was of paramount importance to the community during the Landfill sighting. Thus, a double geomembrane liner system, equipped with a leak detection system was added in Phase 1A to provide early warning of potential problems. The leachate treatment system situated on the east side of the landfill was designed for minimum impact as well. The system includes a 90,000 m³ equalization lagoon capable of storing a full year of leachate production, an aeration lagoon complete with 30 diffusers, a sedimentation pond, a sand filter and a 2.5 Ha phytoremediation area planted with more than 4,000 poplar, alder and cottonwood trees. During the summer treatment season the trees will uptake most of the treated leachate that will be generated on this project, resulting in minimal discharge to the environment.

SHA developed the Landfill Design, Operations, and Closure Plan (DOCP), which presents the design and operational considerations for the Landfill (SHA, 2015). The DOCP provides a lifespan analysis and gives additional details on the environmental control systems as well as outlines environmental monitoring programs for groundwater, surface water, leachate discharge and phytoremediation soils sampling.

RDKS initiated their surface water and groundwater sampling monitoring program in 2017, with their first sampling event occurring in April of 2017. This report is the third annual water quality report

prepared since the site was commissioned in November 2016. This report details a review of the site conditions, groundwater and surface water quality monitoring results, groundwater flow direction, and leachate discharge characteristics for the year of 2019, as regulated by the Operational Certificate (OC) 17227.

2. SCOPE OF WORK

The Operational Certificate and/or the DOCP stipulates that the following monitoring should be completed at the Landfill:

- Monthly measurements of field parameters (pH, conductivity, temperature, dissolved oxygen, turbidity, water level, and flow rate) from the leachate compliance point known as station F5, Treated Leachate Prior to Discharge to Phytoremediation Area. Sampling frequency reduced to quarterly after two complete years of sampling.
- Quarterly sampling of leachate station F5. Sampling frequency reduce to annually after two complete years of sampling.
- Continuous measurement of leachate discharge volume during seasonal discharge period.
- Annual sampling of a composite soil sample from the Phytoremediation Area, obtained prior to discharge each season.
- Monthly measurements of field parameters (pH, conductivity, temperature, and water level) from ten monitoring wells MW-02, MW-13, MW-01, MW-03, MW-04, MW-07, MW-08, MW-09, MW-15, and MW-16. Sampling frequency reduced to quarterly after two complete years of sampling.
- Quarterly measurements of water elevation from six monitoring wells MW-05, MW-06, MW-10, MW-11, MW-12, and MW-14.
- Quarterly sampling of ten monitoring wells MW-02, MW-13, MW-01, MW-03, MW-04, MW-07, MW-08, MW-09, MW-15, and MW-16. Sampling frequency reduced to annually after two complete years of sampling.
- Monthly measurements of field parameters (pH, conductivity, temperature, turbidity, flow rate, and dissolved oxygen) from five surface water monitoring locations. Sampling frequency reduced to quarterly after two complete years of sampling.
- Quarterly sampling of the five surface water stations. Sampling frequency reduced to annually after two complete years of sampling.
- Compilation of an annual environmental monitoring report (this report).

3. SITE DESCRIPTION

3.1 Physiography and Topography

The Landfill is located off Chist Creek Forest Service Road, approximately mid-way between Terrace and Kitimat along Highway 37. The Landfill is located on the northeast crest of the Onion Lake Flats, south of Forceman Ridge. The Landfill site occupies a total area of 53.5 hectares including buffer reserves, as shown on Figure 3-1. The existing topography slopes from north to south as shown on Figure 1 (Appendix A).

The elevation of the ground surface surrounding the Landfill is approximately 230 meters above sea level (masl). The Landfill is located within the Skeena watershed; the Skeena River is the second-longest river entirely within British Columbia.

SHA completed an extensive review and analysis of available climate data to estimate the anticipated leachate generation volumes at the Landfill as part of the detailed design process undertaken in 2015 and early 2016. The Forceman Ridge Landfill is located in a relatively rainy/snowy/wet region of the province (SHA, 2015).

The average annual precipitation at the Terrace Airport is 1,341 mm/year based on the 1980 to 2000 precipitation data. A review of the available 56-year climatic record indicates that the highest precipitation occurred in 1991 when the Terrace Airport station experienced 1,847.2 mm of precipitation.

SHA also undertook a statistical review of the Terrace Airport rainfall data. The historic mean of precipitation from 1956 to 2014 is 1,315 mm/year and the standard deviation is 202.3 mm. The 1 in 100 return period event (99% of data to left of normal curve) is 2.33 standard deviations from mean. In this case, the 1 in 100 year rainfall predicted for the Terrace Airport station is 1,786 mm/year.

Figure 3-1: Landfill Site Location

3.2 Regional and Local Surficial and Bedrock Geology

The regional and local surficial geology of the Landfill comprises of quaternary glaciofluvial sediments which consist mainly of deltaic sands and gravels that span at least 10 m in thickness (Clague 1983).

The regional and local shallow bedrock geology of the Landfill consist of Paleozoic intrusive rocks. These Paleozoic rocks consist mainly of diorite, granodiorite, tonalite, and metagabbro. The Landfill resides within a Paleozoic intermontane volcanic belt (Nelson 2009).

Previous investigations conducted by Golder Associates and AGRA in December of 2013 and 1997 to 2005 respectively, determined the underlying surficial geology at the Landfill consisted of surficial fills and topsoil and stratifies sands and gravels extending to a depth of at least 60 meters below grade (mbg). Borehole logs are available for reference in Appendix E.

The stratified sands and gravel material ranges from gravelly sand to sandy gravel, with layers of clean sand and some cobbles throughout. The lithology was brown to brown grey in colour with some oxidation staining present. Grain sieve analysis done on samples of this material were typically found to be well-graded. Based on the drilling done by AGRA and Golder, subsurface geology at the Landfill typically consists of the following sequence from native ground surface:

- 0.6 m or less of topsoil and surficial fill
- 0.6 to 60 m of stratified sand and gravel
- 60 m Bedrock

3.3 **Applicable Regulatory Criteria**

The Landfill is required to operate in accordance with the monitoring requirements outlined in the amended Operational Certificate (#17227) approved by the BC Ministry of Environment, last amended on September 19, 2019, that stipulates the following conditions with respect to groundwater quality:

- The characteristics of the groundwater at the property boundary shall not exceed drinking water (DW) standards in Schedule 3.2¹ of the Contaminated Sites Regulation (CSR). Where natural background water quality concentrations exceed the aforementioned standard, the characteristics of the groundwater at the property boundary must not exceed background concentrations.
- Where monitoring shows contaminant concentrations exceed the applicable water use, or other standards, the Operational Certificate holder shall notify the Director and take one of the following actions outlined in the OC under Section 6 subsection 16.

Criteria for the surface water monitoring program is not specified in the OC, as such SHA established that the Approved Water Quality Guidelines (BCWQG) for the protection of Aquatic Life (AW) will be applied to all surface water samples. As is standard SHA practice, limits from "A Compendium of Working Water Quality Guidelines for British Columbia: 2017 Edition" were used for parameters which currently don't have approved water quality limits.

FINAL REPORT

¹ CSR standards have been updated and Schedule 3.2 replaced the redacted Schedule 6

The surface water monitoring program is not intended to serve as a detection / compliance program. Rather the program will be maintained to monitor the overall health of the receiving environment. This is the case because water quality in surface waters of Onion Lake and Clearwater drainage may be affected by other anthropogenic uses, in particular Hwy 37. Also, it is estimated that the travel time for groundwater to reach the lakes is on the order of 4 years.

Criteria for the Phytoremediation soil sample program is not specified in the OC, as such SHA established that the CSR Industrial Land Use Criteria for Drinking Water (CSR-DW) and groundwater flowing to aquatic life habitat (CSR-AW) would be used for all soil samples (CSR Schedule 3.1).

3.4 Groundwater

Since 1997, sixteen (16) groundwater monitoring wells have been drilled and completed at the Landfill as shown on Figure 2 in Appendix A. A historical summary of the installment of the groundwater monitoring well network is provided below:

- 1997: AGRA installed MW-01 to MW-03, with MW-01 being located to the east of the property, MW-02 located to the northeast of the property and MW-03 located in the southwest portion of the property;
- 2000: Golder installed MW-04 to MW-06 which are located south of the property;
- 2003: Golder installed MW-07 to MW-12 which are located west and south of the property;
- 2009: Golder installed MW-13 and MW-14, with MW-13 located to the northeast of the property and MW-14 located to the southeast of the property;
- 2016: SHA installed MW-15 and MW-16, located along the south property line of the site.
- 2017: RDKS installed replacement wells for MW-15 and MW-16 as the original 2016 wells proved to be dry part of the year.

Historical groundwater elevations for the Landfill are reported to range from 187.64 masl (MW-02) to 184.29 masl (MW-01) taken in the year 2006. These elevations correspond to about 43 m and 47 m below existing ground level (mbg), respectively. Throughout the eight-year monitoring period, fluctuations of the groundwater table were approximately 2 m in MW-03 and approximately 4 m in MW-02. Higher water levels were recorded during the later spring and early summer months.

Golder 2006 reported the groundwater flows direction to be towards the southeast and there is a regional groundwater flow divide to the south of the Landfill which extends southwest to northeast. Groundwater from the north side of the site discharges into Onion and Clearwater Lakes, while groundwater from the south side of the site discharges into a wetland north of Kitimat River.

The groundwater monitoring well network has been sub-divided into three categories as outlined within the OC 17227; background monitoring wells, early detection monitoring wells and compliance property boundary monitoring wells. In addition to these wells, an additional six wells (MW-05, MW-06, MW-10, MW-11, MW-12 and MW-14) are to be monitored quarterly for water levels. A list of the sub-divided categories and corresponding monitoring wells are provided below in Table 3-1 for reference and are shown on Figure 2 (Appendix A).

Table 3-1: Description of Groundwater Monitoring Locations

Well Type	Monitoring	UTM	Description
, , , , , , , , , , , , , , , , , , ,	Location	Coordinates	
		(+/- 5m)	
Background Well	MW-02	531429.292 E	Located northeast of the property and considered to be
C	(E251531)	6018918.294 N	up-gradient of the WMF and thus represents
			background groundwater quality
Background well	MW-13	531474.768 E	Located northeast of the property and north of MW-02
	(E287385)	6019310.351 N	and considered to be up-gradient of the WMF and thus
			represents background groundwater quality
Early Detection	MW-01	531389.758 E	Located along the east property line
Well	(E251530)	6018097.03 N	
Early Detection	MW-03	530751.085 E	Located at the southwest portion of the property
Well	(E251532)	6018175.245 N	
Early Detection	MW-15	531174.897 E	Located at the southeast property line
Well	(E302210)	6017953.145 N	
Early Detection	MW-16	531014.933 E	Located at the south property line
Well	(E302211)	6017983.296 N	
Compliance	MW-04	530838.009 E	Located approximately 900 meters south of the
Property Well	(E251533)	6017265.713 N	property
Compliance	MW-07	530310.586 E	Located approximately 1 km northwest of the property
Property Well	(E251530)	6019126.073 N	
Compliance	MW-08	529937.722 E	Located approximately 750 meters west of the
Property Well	(E302210)	6018353.56 N	property on the north side of the Christ Creek Forest Road
Compliance	MW-09	530045.064 E	Located approximately 900 meters southwest of the
Property Well	(E302211)	6017464.218 N	property
Water Level only	MW-05	529926.085 E	Located approximately 2 km southwest of the
		6016425.245 N	property and west of the Stewart-Cassiar Highway
Water Level only	MW-06	531226.085 E	Located approximately 2.5 km south of the property
		6015925.245 N	
Water Level only	MW-10	531376.085 E	Located approximately 1.5 km south of the property
		6016475.245 N	
Water Level only	MW-11	532126.085 E	Located approximately 3 km southeast of the property
		6015625.245 N	
Water Level only	MW-12	530651.085 E	Located approximately 2 km south of the property
		6016325.245 N	
Water Level only	MW-14	531960.532 E	Located approximately 1.2 km southeast of the
		6017131.66 N	property

A provincial water well and aquifer records search was performed using the Government iMap BC georeferenced database to help understand the regional hydrostratigraphic units in proximity to the Landfill. The results of the water well and aquifer search are summarized below for reference.

- Aquifer 0794: Located 3 km west of the Landfill The unconfined aquifer consists of undifferentiated intermixed glaciofluvial and lacustrine deltaic sediments and is 11.7 km². Reported yields are 0.1 and 7.0 L/s. Depth to water 18 to 53 mbg. This aquifer is used for commercial and industrial water users.
- Aquifer 0818: Located 3 km west of the Landfill The confined aquifer consists of glaciofluvial and lacustrine deltaic sediments comprised of sand and gravel and is 0.6 km². Reported yields are 3.8 and 10 L/s. Depth to water ranges from 84 to 85 mbg. This aquifer is used for commercial and industrial water users.
- Water wells: The results of the water well search indicate there are ten (10) water well users in a 5 km radius of the site.

3.5 Surface Water

There are three lakes, Onion Lake, Lower and Upper Clearwater Lakes and two surface water receiving environments, Onion Creek, and Clearwater Creek located downgradient from the Landfill, as shown on Figure 2 (Appendix A).

Baseline surface water sampling stations will be sampled and maintained on the southeast outlet of Onion Lake, at the outlet of Upper Clearwater Lake, and at the outlet of Lower Clearwater Lake where groundwater seepage / drainage has been observed. Two additional sites, at the outflow creek from Onion Lake and Clearwater Creek immediately upstream of where these creeks cross the existing Forest Service Road, will be sampled as per the sampling program outlined in Section 2. A description of the surface water sampling locations is provided below in Table 3-2.

Table 3-2: Description of Surface Water Monitoring Locations

Monitoring Location	UTM Coordinates (+/- 5m)	Description
SW-01	529691.578 E 6018322.753 N	East side of Onion Lake
SW-02	528942.587 E 6017456.235 N	Outlet of Upper Clearwater lake
SW-03	528778.181 E 6018126.088 N	Outlet of Lower Clearwater Lake
SW-04	528325.255 E 6019465.882 N	Creek from Onion Lake
SW-05	528450.437 E 6019552.438 N	Clearwater Creek

One of the primary objectives of the surface water management plan is to minimize leachate production by means of surface water diversion. Secondary objectives are to prevent erosion of the operational and final cover systems, to prevent ponding of surface water on the cover system, to control flooding of the active landfill areas and control surface water in a manner compatible with the proposed end-uses. In order to manage the surface water from the Landfill and to protect the Landfill area from erosion as mentioned above, crest ditches will be constructed and lined with an erosion control blanket to convey the surface water to various downchutes located along the slopes of the landfill. The downchutes will then convey the surface water to the toe ditches, installed along the toe of the landfill footprint, inside the perimeter berm and access roads.

Clean run-on water will be diverted by the perimeter berm to prevent any site flooding. Site flooding has occurred in the past because of the existing topography which can be viewed in Figure 1. In general, the existing topography slopes downwards from North to South which allowed two flood events to occur in November 2016 and January 2017 that contributed large volumes of run-on water to the North border and subsequently the Phase 1B excavation. An investigation revealed that during extreme precipitation and snow melt events the old Scully Creek forest service road collects run-off from a large upland catchment and conveys that run-off westward along the road until a slight escarpment is reached approximately at the middle of the landfill excavation. The perimeter berm will mitigate this issue.

3.6 Leachate

Leachate samples are collected at one leachate station F5, which is the OC compliance point for leachate discharge onto the phytoremediation area. Leachate station F5 is shown on Figure 4 and described in Table 1. The leachate sample station has been equipped with a stop-cock sampling port that make sample collection efficient and convenient. An annual soil sample from the phytoremediation area is also to be collected and tested, as per the OC 17227. Section 2 details the sampling frequency and sampling parameters for the leachate monitoring program.

The leachate treatment system has been designed to reduce contaminant concentrations through the four-stage treatment process (equalization, aeration, sedimentation, sand filter) and to consume the majority of the treated effluent in the on-site phytoremediation plantation. The leachate monitoring plan is to confirm discharge compliance. Discharge compliance criteria is detailed in the OC 17227, which can be viewed in Appendix D.

Landfill leachate typically has elevated concentrations of several indicator parameters. Conductivity is a parameter indicative of the total amount of dissolved minerals in a water sample and higher conductivity levels (>500 μ S/cm) are often indicative of leachate impact. Chloride is also used as a leachate indicator at municipal landfills since chlorine is a common constituent of materials disposed of in municipal solid waste. Chloride has low affinity to soil or other matter meaning that it remains dissolved in solution after it enters a water system. Raw leachate from municipal landfills typically has very high chloride concentrations that typically occur in the range of 100 mg/L to 3,000 mg/L. Chloride concentrations typically decrease as the leachate mixes with the groundwater and becomes diluted. Ammonia is another indicator of landfill impact.

Leachate generation modelling completed by SHA as part of the development of the DOCP for the site showed that the average annual leachate production is 1,413 mm, 353 mm, and 0.43 mm per year for active areas, temporary closed areas, and geomembrane capped areas, respectively. Under extreme conditions, the annual leachate production is 1957 mm, 489 mm, and 0.86 mm for active areas,

temporary closed areas, and geomembrane capped areas, respectively. A summary of the design precipitation and leachate generation rates for the Landfill is presented in Table 20 in Appendix B.

4. METHODS

4.1 Field Techniques

Monitoring well construction details including ENV identifier and elevations are summarized in Table 1. In 2019 there were sixteen (16) active monitoring wells, five (5) surface water stations, and one (1) leachate monitoring station. Surface water, groundwater, and leachate sampling frequency and sampling parameters are listed within Table 1 and Section 2.

The methods used to develop and sample each monitoring well and leachate/surface water station are outlined within the British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air Emissions, Water, Wastewater, Soil, Sediment and Biological Samples (BC 2013)".

Sampling water quality events for the groundwater, surface water, and leachate monitoring programs took place as per Tables 4-1, 4-2, and 4-3 respectively. As in previous years, the water quality monitoring in 2019 was conducted by RDKS personnel. Surface water was sampled twice in 2019 to ensure a full 2-year sample set prior to reducing the sampling frequency to annually. Similarly, groundwater was sampled twice in 2019 to ensure a 2-year sample set prior to reducing the sampling frequency to annually.

Table 4-1: 2019 Surface Water Monitoring Events

Monitoring	Sample Event #1	Sample Event #2			
Location					
SW-01	Frozen	June 25, 2019			
SW-02	March 29, 2019	June 25, 2019			
SW-03	March 29, 2019	June 25, 2019			
SW-04	March 29, 2019	June 25, 2019			
SW-05	March 29, 2019	June 25, 2019			

Table 4-2: 2019 Groundwater Monitoring Events

Monitoring	Sample Event #1	Sample Event #2	Sample Event #3	Sample Event #4
Location	_	_	_	_
Background Wells	8			
MW-2	March 27, 2019	June 26, 2019	-	-
MW-13	-	-	-	-
Early Detection W	Vells			
MW-1	March 25, 2019	June 26, 2019	-	-
MW-3	March 25, 2019	June 26, 2019	-	-
MW-4	March 27, 2019	-	-	-
MW-7	-	-	-	-
MW-8	March 25, 2019	June 26, 2019	-	-
MW-9	March 25, 2019	June 26, 2019	-	-
MW-15	March 26, 2019	June 26, 2019	-	-
MW-16	March 26, 2019	June 26, 2019	-	-
Groundwater Lev	els Only			
MW-5	Obstructed	Obstructed	Obstructed	Obstructed
MW-6	Jan 11, 2019	Feb 27, 2019	-	June 11, 2019
MW-10	Jan 11, 2019	Feb 27, 2019	March 25, 2019	June 11, 2019
MW-11	Jan 11, 2019	Feb 27, 2019	March 25, 2019	-
MW-12	Jan 11, 2019	Feb 27, 2019	March 25, 2019	June 11, 2019
MW-14	Jan 11, 2019	Feb 27, 2019	March 25, 2019	June 11, 2019

Table 4-3: 2019 Leachate Monitoring Events

Monitoring Location	Sampling Events
F5	April 16, 2019
	May 22, 2019
	May 28, 2019
	May 29, 2019
	May 31, 2019
	July 17, 2019
	August 1, 2019

4.2 Quality Assurance

The OC 17227 stipulates for the Landfill a quality assurance and quality control plan as part of their sampling program. The OC 17227 stipulates the terms of the quality assurance program under Section 13.4.3. As part of the program the Landfill must report the results of their field duplicate in terms of the degree of variation as the relative percent difference. The calculation of the relative percent difference is provided below for reference:

$$RPD = \frac{D1 - D2}{\frac{D1 + D2}{2}} X \ 100\%$$

Where:

RPD = Relative Percent Difference

D1 = Measured value of the first duplicate D2 = Measured value of the second duplicate

5. RESULTS

5.1 Groundwater

The groundwater flow conceptual model for the Landfill was generated using the June 2019 groundwater elevation data which was collected by the RDKS, as shown on Figure 3 (Appendix A). The groundwater level and elevation data can be found in Table 1 (Appendix B). The monitoring wells at the Landfill are screened within an unconfined shallow aquifer consisting of well graded sands and gravels.

The predominant groundwater flow direction at the Landfill is directed towards the center of the Landfill. There is a local groundwater divide just south of the Landfill as shown on Figure 3. The bottom of the Landfill is lined with a geomembrane liner as discussed in Section 3.6. The Landfill's geomembrane liner impedes natural infiltration of precipitation and as a result has created a localized groundwater elevation low point. Groundwater flow is driven in part by gravitational forces, as such groundwater will move from high elevation to low elevation. Taking into consideration the Landfill is a localized groundwater elevation low, groundwater will naturally migrate towards the Landfill. The groundwater flow conceptual model will require more information ie. the drilling of more boreholes and measuring the water elevation within the local lakes and rivers to confirm if the conceptual model is spatially accurate.

The average groundwater elevations measured at the Landfill in 2019 are provided within summary Table 5-1 below. An average, minimum, maximum and difference between minimum and maximum are provided for reference. In 2019, the lowest groundwater elevation at the Landfill was measured within MW-09 (151.54 masl) in March and the highest groundwater elevation was measured within MW-14 (199.42 masl) in January. Groundwater elevations fluctuated between 0.03 m to 1.52 m annually.

Table 5-1: 2019 Groundwater Elevation Summary Table

MW	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16
Average	181.31	185.15	182.53	173.06	Dry	168.13	185.48	184.66	151.99	171.07	166.58	167.15	Dry	198.86	180.98	181.67
Min	180.79	184.89	182.48	172.37	Dry	167.42	185.42	184.04	151.54	169.94	166.56	166.53	Dry	198.18	180.16	181.21
Max	182.11	185.31	182.61	173.87	Dry	168.54	185.56	185.46	152.59	171.46	166.59	167.72	Dry	199.42	181.68	182.31
Diff	1.32	0.42	0.13	1.50	Dry	1.12	0.14	1.42	1.05	1.52	0.03	1.19	Dry	1.24	1.52	1.10

5.2 Average Linear Groundwater Velocity

The average linear groundwater velocity was calculated for the Landfill, ie. the amount of time it takes for leachate leaving the Landfill to reach the down gradient property boundary assuming groundwater is flowing away from the Landfill. The stratified sands and gravel materials underlying the Landfill are assumed to transmit groundwater through its more permeable sandy layers; therefore, the hydraulic conductivity of 7×10^{-6} m/s was selected based on typical hydraulic values for sands and gravels.

The flow of groundwater beneath the site was calculated using Darcy's Law as shown by the relationship:

$$q (m/s) = -k x (\Delta h/\Delta l)$$
 where:
$$k = \text{hydraulic conductivity},$$

$$\Delta h/\Delta l = \text{hydraulic gradient}$$

Figure 3 shows the groundwater flow contours for the Landfill. The hydraulic gradient can be determined by the head differentials which can be inferred from the groundwater contours map. It is observed that the hydraulic gradient at the landfill is on average 1 m of head per 10 m of distance. With the above hydraulic conductivity and the hydraulic gradient, the Darcy velocity q is calculated at $0.6 \, m/d$

The resultant advective velocity of the groundwater can be determined from q using the porosity of the soil as shown in the relationship below:

$$v = q/n$$
 where: $v = velocity in m/s$ $n = porosity of soil$

A porosity of 0.4 was selected for the soil. The porosity assumes the material is homogeneous. The resulting velocity is 1.5 m/d which equates to a travel time of 4 years for groundwater to travel the 2.2 km from the edge of the Landfill footprint to Upper Clearwater Lake. However, this only serves as a rough estimate and does not consider localized soil stratigraphy or varying hydraulic conductivity across the site. Furthermore, these limitations also apply to areas outside the Landfill borders with the addition of varying flow depth.

5.3 Groundwater Quality

Groundwater quality data for 2019 as well as historical data are summarized in Tables 2 to 14, which are available in Appendix B. As seen in the tables, some parameter guidelines are dependent upon hardness or pH, which were taken into account when determining if the parameter concentrations exceeded CSR DW Guidelines.

5.3.1 Background Groundwater Quality

Background water quality is observed from sampling results corresponding to Monitoring Wells MW-02 and MW-13. The monitoring well network categories are described in detail in Section 3.4.

A local background groundwater characterization was completed for the Landfill to establish a benchmark to compare all 2019 groundwater quality data against. Below is a list of the key leachate indicator parameters used in the background groundwater characterization for 2019, along with their corresponding values. As MW-13 was dry during all sampling events in 2019, only water quality data from MW-02 was used in the background groundwater characterization for 2019.

- pH ranges from 7.08 to 7.22.
- Hardness ranges from 21.9 to 22.0 mg/L as CaCO3.
- Conductivity (field) ² ranges from 36 to 50 μS/cm.
- Ammonia ranges from a non-detectable limit to 0.0117 mg/L.
- Chlorides were non-detectable.
- Manganese ranges from 0.0508 to 0.0613 mg/L.
- Iron ranges from 0.048 to 0.125 mg/L.

There were no BC CSR DW Guideline exceedances for the background groundwater monitoring well network in 2019, nor have there been any exceedances in previous sampling events. In general, the dissolved metals concentrations, if detectable, are at least one order of magnitude below the CSR-DW criteria.

5.3.2 Early Detection and Compliance Monitoring Well Network

Water quality for the early detection wells fall into two categories, pre-landfill results and post landfill results. Specifically, pre-landfill results correspond to values prior to the year of 2016, whereas post landfill results are after this time. The following monitoring wells are part of the early detection monitoring well network; MW-01, MW-03, MW-04, MW-07, MW-08, MW-09, MW-15 and MW-16. All paragraphs beginning with an "*" denote the monitoring well is a compliance point.

MW-01 is located at the south east corner of the Landfill property line boundary. The leachate groundwater quality indicator parameters were all below background concentrations (Section 5.3.1). with the exception of chloride, which had a maximum of 0.56 mg/L. All groundwater parameters analyzed during the 2019 program were below CSR DW Guidelines.

MW-03 is located at the south west corner of the Landfill. The leachate groundwater quality indicator parameters at MW-03 were all below background concentrations (Section 5.3.1) with the exception of conductivity and hardness. Conductivity ranged from $80 - 100 \,\mu\text{S/cm}$ and hardness ranged from $53.6 - 67.6 \,\text{mg/L}$ The pH at this location was more basic than background and ranged from 8.05 - 8.08. All groundwater parameters analyzed during the 2019 program were below CSR DW Guidelines.

² Lab conductivity reading was unavailable.

MW-15 is located at the southern perimeter boundary of the Landfill. Groundwater concentrations were all below leachate groundwater quality indicator parameters with the exception of conductivity and hardness. Conductivity ranged from $164-174~\mu\text{S/cm}$ and hardness ranged from 82.5-87.4~mg/L. The pH at this location was more basic than background and ranged from 8.18 to 8.22. All parameters analyzed during the 2019 program were below CSR DW Guidelines.

MW-16 is located at the southern perimeter boundary of the Landfill. Groundwater concentrations were all below leachate groundwater quality indicator parameters with the exception of conductivity and hardness. Conductivity ranged from 152 - 159 μ S/cm and hardness ranged from 77.6 – 83.9 mg/L. The pH at this location was more basic than background and ranged from 8.16 to 8.21. All parameters analyzed during the 2019 program were below CSR DW Guidelines.

*MW-04 is a compliance point and is located approximately 800 m south of the Landfill. Leachate groundwater quality indicator concentrations such as chloride, manganese and iron were all below background concentrations stated in Section 5.3.1., whereas pH, hardness, conductivity, and ammonia were all above background concentrations. All groundwater parameters analyzed during the 2019 program were below CSR DW Guidelines.

*MW-07 is located approximately 500 m northwest of the Landfill. Groundwater sampling at this located was not conducted in 2019 as the well was dry during the sampling events. However, concentrations during the last sampling event when the well contained water in 2017, showed leachate groundwater quality indicator parameters all below background with the exception of conductivity and hardness. Also, all groundwater parameters analyzed during the 2017 program were below CSR DW Guidelines.

*MW-08 is located approximately 500 m west of the Landfill. Groundwater concentrations were all below leachate groundwater quality indicator parameters with the exception of ammonia and chloride. Ammonia ranged from non-detectable to 0.0266 mg/L and chloride ranged from non-detectable to 0.92 mg/L. All parameters analyzed during the 2019 program were below CSR DW Guidelines.

*MW-09 is located south west of the Landfill. Groundwater concentrations of hardness, manganese, and iron were all below leachate groundwater quality indicator parameters listed in Section 5.31. Conductivity, ammonia, and chloride were slightly above background. Conductivity ranged from 42 to 87 μ S/cm, ammonia ranged from non-detectable to 0.0205 mg/L, and chloride ranged from non-detectable to 0.63 mg/L. All parameters analyzed during the 2019 program were below CSR DW Guidelines.

MW-12 is located north of upper Kitimat road on the east side of Stewart-Cassiar Highway. Concentrations of all leachate groundwater quality indicator parameters were all below or similar to background. All parameters analyzed during the 2019 program were below CSR DW Guidelines.

5.4 Surface Water Quality

Surface water quality data for 2019, as well as historical data are summarized in Tables 15 to 19 and are available in Appendix B. Some parameter guidelines are dependent upon hardness or pH which were taken into account when determining if the parameter concentrations exceeded BC WQG-AW Guidelines.

5.4.1 Surface Water Monitoring Stations

Surface water samples were collected at the five surface water monitoring locations; at Onion Lake (SW-01), Clearwater Lakes (SW-02 and SW-03) and the streams that drain these water bodies (SW-04 and SW-05). Surface water monitoring locations can be viewed on Figure 2. Each monitoring location is specified for sampling frequency and monitoring parameters as required by the DOCP surface water monitoring program, regulated by the OC 17227. This program is summarized in Section 2.0.

Baseline surface water sampling stations were maintained on the southeast side of Onion Lake where groundwater seepage / drainage is located, at the outlet of Upper Clearwater Lake, and at the outlet of Lower Clearwater Lake. Two additional sites at the outflow creek from Onion Lake and Clearwater Creek immediately upstream of where these creeks cross the existing Forest Service Road are sampled for field parameters only.

5.4.1.1 SW-01 (Onion Lake)

SW-01 was sampled once for pre-landfill water quality results (prior to 2016), in October of 2012. Below is a list of parameters and values from that sampling event which are key leachate indicating parameters for pre-landfill conditions.

• pH: 6.3

Hardness: 3.9 mg/L as CaCO3

• Conductivity: 33.7 µS/cm

Ammonia: Non-detectable.

• Chloride: 10.3 mg/L

Manganese-Total: 0.0211 mg/L

Iron-Total: 0.0304 mg/L

As per the OC requirements, SW-01 was sampled quarterly for the first two years of post-landfill water quality in 2017 and 2018. After two complete years of sampling, SW-01 is required by the OC to be sampled on an annual basis. In 2019, SW-01 was sampled from once in June. Post landfill results obtained at SW-01 in 2019 are summarized below with a list of parameters for key leachate indicator parameters.

• pH: 6.5

• Hardness: 2.49 mg/L as CaCO3.

• Conductivity: 22.9 μS/cm.

• Ammonia: Non-detectable.

• Chloride: 5.69 mg/L.

Manganese-Total: 0.0233 mg/L.

• Iron-Total: 0.031 mg/L.

No exceedances of the BCWQG-AW occurred in 2019.

5.4.1.2 SW-02 (Upper Clearwater Lake)

SW-02 was sampled twice for pre-landfill water quality results (prior to 2016), in October 2012 and April 2013. Below is a list of parameters and values ranges for key leachate indicating parameters for pre-landfill conditions.

- pH ranged from 7.8 to 8.0.
- Hardness ranged from 74.8 and 75.6 mg/L as CaCO3.
- Conductivity was $154 \mu S/cm$ for both events.
- Ammonia was non- detectable.
- Chloride ranged from 1.1 to 1.8 mg/L.
- Manganese-Total was non-detectable in 2012. During the 2013 sample, this parameter was in exceedance of the BCWQG-AW criteria with a value of 2.06 mg/L.
- Iron-Total was non-detectable in 2012. During the 2013 sample, this value was below the criteria value with 0.0171 mg/L.

In general, the total metals concentrations, if detectable, did not exceed the BCWQG-AW criteria.

As per the OC requirements, SW-02 was sampled quarterly for the first two years of post-landfill water quality in 2017 and 2018. After two complete years of sampling, SW-02 is required by the OC to be sampled on an annual basis. In 2019, SW-02 was sampled from twice in March and June. Post landfill results obtained at SW-02 in 2019 are summarized below with a list of parameters and value ranges for key leachate indicating parameters.

- pH ranges from 8.1 to 8.2.
- Hardness ranged from 79.3 to 80.6 mg/L as CaCO3.
- Conductivity ranged from 96 to 123 µS/cm.
- Ammonia was non- detectable.
- Chloride was 0.88 mg/L at both sampling events.
- Manganese-Total ranged from 0.00043 to 0.00050.
- Iron-Total was non-detectable during both sampling events.

No exceedances of the BCWQG-AW occurred in 2019.

5.4.1.3 SW-03 (Lower Clearwater Lake)

Similar to SW-02, SW-03 was sampled twice for pre-landfill results (prior to 2016), in October 2012 and April 2013. Below is a list of parameters and values ranges for key leachate indicating parameters for pre-landfill conditions.

- pH ranged from 7.9 to 8.2.
- Hardness ranged from 72.8 to 73.3 mg/L as CaCO3.
- Conductivity ranged from 149 to 151 μ S/cm for both events.

- Ammonia was non-detectable.
- Chloride ranged from 1.3 to 1.7 mg/L.
- Manganese-Total was non-detectable for both sampling events.
- Iron-Total ranged from 0.0069 to 0.0091 mg/L.

In general, total metals concentrations, if detectable, were at least one order of magnitude below the BCWQG-AW criteria for pre-landfill results.

As per the OC requirements, SW-03 was sampled quarterly for the first two years of post-landfill water quality in 2017 and 2018. After two complete years of sampling, SW-03 is required by the OC to be sampled on an annual basis. In 2019, SW-03 was sampled from twice in March and June. Post landfill results obtained in 2019 are summarized below with a list of parameters and value ranges for key leachate indicating parameters.

- pH ranges from 8.0 to 8.2 pH.
- Hardness ranged from 67.1 to 79.6 mg/L as CaCO3.
- Conductivity ranged from 81 to $122 \mu S/cm$.
- Ammonia ranged from non-detectable to 0.0054 mg/L.
- Chloride ranged from 0.85 to 1.11 mg/L.
- Manganese-Total ranged from 0.0016 to 0.0011 mg/L.
- Iron-Total ranged from non-detectable to 0.015 mg/L.

No exceedances of the BCWQG-AW occurred in 2019.

5.4.1.4 SW-04 (Creek from Onion Lake)

Only post landfill data was available for SW-04. As per the OC requirements, SW-04 was sampled quarterly for the first two years of post-landfill water quality in 2017 and 2018. After two complete years of sampling, SW-04 is required by the OC to be sampled on an annual basis. In 2019, SW-04 was sampled from twice in March and June. The results obtained in 2019 are summarized below with a list of parameters and value ranges for key leachate indicating parameters.

- pH ranges from 7.5 to 7.7.
- Hardness ranged from 25.5 to 31.8 mg/L as CaCO3.
- Conductivity ranged from 45 to 70 µS/cm.
- Ammonia was non- detectable.
- Chloride ranged from 9.6 to 11.0 mg/L.
- Manganese-Total ranged from 0.0109 to 0.0193 mg/L.
- Iron-Total ranged from 0.049 to 0.056 mg/L.

No exceedances of the BCWQG-AW occurred in 2019.

5.4.1.5 SW-05 (Clearwater Creek)

Only post landfill data was available for SW-05. As per the OC requirements, SW-05 was sampled quarterly for the first two years of post-landfill water quality in 2017 and 2018. After two complete years of sampling, SW-05 is required by the OC to be sampled on an annual basis. In 2019, SW-05 was sampled from twice in March and June. The results obtained in 2019 are summarized below with a list of parameters and value ranges for key leachate indicating parameters.

- pH ranged from 8.0 to 8.2.
- Hardness ranged from 70.0 to 79.0 mg/L as CaCO3.
- Conductivity ranged from 91 to 115 µS/cm.
- Ammonia was non-detectable.
- Chloride ranged from 0.89 to 1.16 mg/L.
- Manganese-Total ranged from 0.0005 to 0.0014 mg/L.
- Iron-Total was non-detectable.

No exceedances of the BCWQG-AW occurred in 2019.

5.5 Leachate Monitoring

5.5.1 Leachate Monitoring Stations and Criteria

The Forceman WMF has been designed with a state-of-the-art leachate treatment system that comprises of five stages: (1) equalization, (2) aeration, (3) sedimentation, (4) sand filtration, and (5) phytoremediation. The four stages, prior to phytoremediation, take place within lined treatment ponds. In the final step, Phytoremediation, treated leachate is discharged by drip irrigation onto a 1.85 Ha area planted with 2,800 hybrid poplars, cotton woods, and alders that uptake the treated leachate.

Field readings of pH, conductivity, temperature, dissolved oxygen, turbidity, water level, and flow rate are to be collected at the leachate monitoring location. Field readings at the monitoring location are to be conducted by the RDKS monitoring technician on a monthly basis during the first two years of operation, and then quarterly following two complete years of sampling. Volume is to be measured continuously during periods of discharge (typically April to October). Laboratory samples are to be extracted from sampling ports at each pump station initially at a quarterly frequency for the first two years, and then at an annual frequency in subsequent years. A one-time sample of VOCs is required for background levels.

Water quality sampling was conducted in April, May, July, and August 2019 at the leachate monitoring location compliance point (F5), shown on Figure 4. The water quality results are presented in Table 21 in Appendix B. VOCs were not sampled in 2019 and are scheduled to be sampled in 2020 for background levels as per the OC.

5.5.1.1 F5: Sand Cyclone

Leachate monitoring station F5 is the compliance point as per the OC criteria and is located at the sand cyclone outlet. The leachate treatment system was shut down for the winter in 2018 and leachate

treatment started up again in April 2019. The first compliance sample was collected on April 16, 2019. Water quality results for this location can be viewed in Table 21. The April water quality results indicated that the iron concentration at F5 was 25.30 mg/L and exceeded the OC criteria of 6 mg/L. Once the RDKS received the water quality data from the lab indicating the exceedance, they re-circulated leachate from the sand filter to the EQ Pond and water quality sampling commenced again on May 22, 2019. The May 22nd sampling event indicated that iron concentrations had dropped to 7.62 mg/L but still exceeded the OC criteria. Three more sampling events were conducted on May 28th, May 29th, and May 31st until iron concentrations were below the OC criteria of 6 mg/L. No leachate was discharged until water quality results were under the OC requirements. This is reflected in the water quality results from May 31st, when iron was 3.68 mg/L. Another compliance sample was collected in July and iron was 7.67 mg/L, which exceeded the OC criteria. Once again, leachate was recirculated until it met the OC criteria. The last compliance sample was collected in August and iron was 1.15 mg/L, which was below the OC criteria.

SHA suspects that the iron exceedance in April was due to start up of the system after the winter shutdown. Some treated leachate was stored in all parts of the system over the winter months while the discharge component was turned off since the phytoremediation area was dormant. SHA suspects that the leachate stored within the sand filter dissolved some metals from the soil, which resulted in the initial slug of treated leachate from the sand filter to become elevated in dissolved iron. Once the initial slug of leachate had moved through the system, iron levels at sand filter discharge location F5 dropped to 3.68 mg/L. However, it is unknown what caused the iron exceedance at the July sampling event.

With the exception of the iron exceedances described above, the water quality results at F5 indicate that the leachate that was treated in 2019 was in compliance with the OC criteria.

5.5.2 Leachate Discharge Volume

This section discusses the volume of leachate discharged to the phytoremediation area for 2019. The system consists of one pressure sensor controlled pump station to pump the leachate from the base of the landfill to the top of the equalization pond (Pump Station 1), a second float controlled pump station to refill the aeration pond (Pump Station 3), and a third float controlled pump station to distribute treated effluent into the drip irrigation system (Pump Station 5). The total volume of leachate discharged for the 2019 year was estimated using recorded pump hour data from Pump Station 5 (Appendix F) and the pump curve for Pump #5 (Appendix F). Discharge occurred from May 31, 2019 to September 26, 2019 and the discharge was stopped and re-circulated temporarily from July 27, 2019 to August 6, 2019.

At this time, the system does not have a pressure gauge or a flow meter. However, the RDKS has reported to SHA that a flow meter for Pump #5 has been ordered. Without pressure gauge readings or a flow meter, it is not possible to accurately estimate the flow at any point. Therefore, the following assumptions were made to estimate the total volume of leachate discharged for the 2019 year:

- Head difference of 7.0 m from Pump #5 to Phytoremediation discharge point;
- Pump #5 design operating point set at 338 GPM or 1,842 m³/day at total dynamic head of 32.5 m (as determined from pump curve);
- Pump #5 expected operating point set at 500 GPM or 2,725 m³/day at total dynamic head of 32.5 m (as determined from pump curve); and
- Pump #5 assumed to have been operating at 340 GPM (near the design operating point) for the duration of the discharge period.

Given the above assumptions, the leachate discharge rates were calculated and are summarized in Appendix F. In 2019, the calculated volume of leachate discharged onto the phytoremediation area was estimated to be 77,964 m³, with a maximum daily discharge rate of 1,951 m³/day and an average discharge rate of 661 m³/day over the discharge period. It should be noted that some of the discharge rates exceeded the OC criteria, as the OC states that the maximum authorized rate of discharge shall be 609 m³/day and the average rate of discharge shall not exceed 400 m³/day over the discharge period. The discharge rates that exceeded the OC criteria in 2019 have been highlighted in Appendix F.

A number of assumptions had to be made to calculate the total volume of leachate discharged for 2019 and as such, the calculated discharge rates may not be an accurate representation. SHA recommends that a pressure gauge or flow meter be installed just after Pump #5 for more accurate readings in the future. SHA also recommends that pump records be preserved and checked periodically to make sure that the data being recorded makes sense and is in compliance with the OC. If any exceedances or anomalies are recorded, an immediate measure needs to be taken to make necessary adjustments to be in compliance.

5.6 Phytoremediation Soil Sample

A composite soil sample from the phytoremediation area was taken on May 22, 2019. As per the OC, the composite soil sample was assembled from 4 locations in the phytoremediation area. The results can be viewed in Table 22. Soil results were compared against the Contaminated Sites Regulation Industrial Land Use criteria for Drinking Water and Aquatic Life. All results were compliant with the criteria and do not show signs of metals accumulation or excessive salinity in the phytoremediation soil.

6. DISCUSSION

6.1 Groundwater

A summary of the groundwater quality results for the background, early detection, and compliance monitoring wells are shown in Table 6-1 below. In general, the 2019 post landfill results are similar to the pre-landfill results, indicating no leachate impact. Also, the early detection and compliance property groundwater monitoring well network water quality was all below CSR DW Guidelines.

Leachate indicator parameters such as conductivity, chloride, manganese, and iron have been graphed in Graphs 1 through 4 (Appendix C) as a visual representation of pre-landfill and post-landfill water quality. In general, all conductivity results are representative of naturally occurring water, with conductivity less than 200 µS/cm. Select monitoring wells, MW-7, MW-15 and MW-16 are displaying signs of slightly

elevated conductivity values. Of note, MW-7 had a field conductivity reading of 205 µS/cm during the June sampling event. Unfortunately, MW-07 did not contain enough water to be sampled for lab analysis during the 2019 sampling event and therefore determining the cause of the elevated conductivity at this location is not viable at this time. This location should be monitored next year and the water quality data should be analyzed. It is difficult to know if elevated conductivity values at MW-15 and MW-16 are due to activities from the Landfill as there are no pre-landfill conductivity values for these locations. However, conductivity levels at MW-15 and MW-16 have risen slightly since sampling began in 2017 and as such, should be monitored over the course of next year to confirm that the elevated conductivity values do not continue to increase over time. Both MW-15 and MW-16 are early detection wells.

Table 6-1: Summary of Groundwater Quality Results 2019

	Background	Early Detec	tion Wells	-	Monitoring
	Wells	(MW-01, 0	3, 15, 16)	Wells (MW-0	04, 07, 08, 09)
	(MW-02, 13)	Pre-Landfill	Post-	Pre-Landfill	Post-Landfill
		(prior to	Landfill	(prior to	(post 2016)
		2016)	(post 2016)	2016)	
pН	7.1 - 7.2	6.8 - 8.7	6.7 - 8.2	6.3 - 8.6	6.7 - 7.8
Hardness	21.9 - 22.0	10.4 - 14.9	14.0 - 87.4	8.5 - 22.9	12.3 - 36.0
Conductivity	36 – 51	Not Sampled	28 – 174	27 – 28	33 - 205
(µS/cm)	30 – 31	Not Sampled	20 - 174	21 – 20	33 – 203
Ammonia	ND - 0.0117	ND – 0.19	ND –	0.05 - 0.06	0.0129 –
(mg/L)	ND - 0.0117	ND = 0.19	0.0117	0.03 - 0.00	0.0266
Chloride	ND	ND	ND – 0.90	ND – 2.4	ND – 0.92
(mg/L)	ND	ND	ND = 0.90	ND - 2.4	ND = 0.92
Manganese	0.0508 -	0.0053 -	0.00046 -	0.00082 -	0.00028 -
(mg/L)	0.0613	0.339	0.0060	0.348	0.0565
Iron (mg/L)	0.048 - 0.125	ND - 0.0923	ND - 0.025	ND - 0.0338	0.073
ND is non-detecta	able.				

6.2 Surface Water

A summary of the surface water quality results for surface water monitoring locations SW-01 to SW-05 is shown in Table 6-2 below. In general, the 2019 post landfill results are similar to the pre-landfill results, indicating no leachate impact. Leachate indicator parameters such as conductivity, chloride, manganese, iron, and aluminum have been graphed in Graphs 5 through 9 as a visual representation of pre-landfill and post-landfill water quality. All conductivity results are representative of naturally occurring water with conductivity less than 200 μ S/cm. This is expected given the distance of the sample locations from the Landfill.

Table 6-2: Summary of Surface Water Results 2019

	SW	-01	SW	7-02
	Pre Landfill (prior to 2016)	Post Landfill (post 2016)	Pre Landfill (prior to 2016)	Post Landfill (post 2016)
pН	6.3	6.5	7.8 - 8.0	8.1 - 8.2
Hardness	3.9	2.49	74.8 - 75.6	79.3 - 80.6
Conductivity (µS/cm)	33.7	22.9	154	96 – 123
Ammonia (mg/L)	ND	ND	ND	ND
Chloride (mg/L)	10.3	5.69	1.1 - 1.8	0.88
Manganese (mg/L)	0.0211	0.0233	ND – 2.06	0.00043 - 0.00050
Iron (mg/L)	0.0304	0.0310	ND – 0.0171	ND
	SW	-03	SW-04	SW-05
	Pre Landfill	Post Landfill	Post Landfill	Post Landfill
pН	7.9 - 8.2	8.0 - 8.2	7.7 - 7.9	8.0 - 8.2
Hardness	72.8 - 73.3	67.1 - 79.6	26.4 - 39.4	70.0 - 79.0
Conductivity (µS/cm)	149 - 151	81 – 122	50 - 85	91 – 115
Ammonia (mg/L)	ND	0.0054	ND - 0.0058	ND
Chloride (mg/L)	1.3 – 1.7	0.85 - 1.11	7.02 - 13.8	0.89 – 1.16
Manganese (mg/L)	ND	0.0016 – 0.0011	0.00937 - 0.244	0.0005 - 0.0014
Iron (mg/L)	0.0069 – 0.0091	ND – 0.015	0.055 - 0.795	ND
ND is non-detec	table.			

6.3 Leachate

The performance of the leachate treatment system can be evaluated by analyzing the water quality results at the leachate monitoring compliance point F5, located at the sand cyclone outlet prior to discharge to the phytoremediation area. The OC criteria discharge parameters pH, ammonia, chloride, cadmium, iron, and zinc have been graphed in Graphs 10 to 15 to create a visual representation of the change in water quality at the compliance point for the 2019 discharge period.

As seen in Graph 10, the pH of the effluent varies within the OC criteria range of 6.5 – 8.5. The pH of the effluent starts off near neutral and appears to become slightly more basic at the end of the discharge period. As seen in Graph 11, ammonia concentrations remain below the OC criteria at all monitoring events and concentrations are seen to decrease as the effluent continues to discharge. As seen in Graph 13, Chloride concentrations remain below the OC criteria at all sampling events and vary throughout the discharge period. A reduction in chloride concentrations is evident between the May and July sampling events. As seen in Graph 14, cadmium concentrations remain below the OC criteria at all sampling events. As the effluent was recirculated through the treatment system, the iron concentrations decrease to below the OC criteria at the May 31st sampling event. Interestingly, iron concentrations spike at the July sampling event and then are lowest at the August sampling event. It is unclear whether acidic conditions could have promoted the dissolution of iron and increased dissolved iron concentrations in the effluent, as the pH during the July sampling event was less acidic than previous sampling events. As seen in Graph 16, zinc concentrations are low at all sampling events and remain below the OC criteria limit.

It is hard to establish long-term water quality trends as 2019 was only the third year that the system was in operation and leachate sampling was conducted. Nevertheless, it is evident that as the leachate passes through the system it is highly diluted and effectively treated as the concentrations of leachate indicator parameters at the discharge point (F5) are all below the OC criteria, with the exception of iron.

7. QUALITY ASSURANCE AND QUALITY CONTROL

A quality assurance and quality control (QA/QC) program is a system of procedures, checks, audits and corrective actions that will assist in ensuring that the data generated at the laboratory is of the highest achievable quality. This is of prime importance, as the monitoring data forms the basis for all of the conclusions regarding the impact of the Landfill on the surrounding environment. As per the OC, one duplicate sample should be collected during each sampling event from one of the discharge points. Furthermore, each duplicate sample should be submitted to the laboratory; one of the pair identified as the regular sample, and the other, as a blind sample identified by a fictitious site-name established solely to identify the duplicate sample. The results of the field duplicates in terms of the degree of variation as the relative percent difference should be reported for each parameter, as specified in the OC.

In 2019, duplicate samples were obtained during the June and March sampling events at surface water monitoring locations SW-01 and SW-02, respectively. The results of the duplicate samples and the degree of variation as the relative percent difference for each parameter are presented in Table 16 and Table 17.

In general, the duplicate samples obtained in 2019 had a relative percent difference less than 20%, with the exception of two analytes. A summary of the analytes which were out of compliance (RPD > 20%) are listed below in Table 7-1.

Table 7-1: Summary of Duplicate Sample Non-Compliance 2019

Sampling Location	Monitoring Event	Analyte	RPD
SW-01	June 25, 2019	Aluminum	38.01%
SW-01	June 25, 2019	Cadmium	26.11%

8. CONCLUSIONS AND RECOMMENDATIONS

This report documented the groundwater, surface water, and leachate water quality for the 2019 year at the Forceman WMF. For surface water and groundwater, the post landfill results are not significantly different from the pre-landfill results, indicating no discernable leachate impact. In general, all conductivity results are representative of naturally occurring water with conductivity less than $200 \, \mu \text{S/cm}$. Based on the 2019 sampling results, there is no discernable leachate impact at any of the groundwater or surface water monitoring locations.

Leachate was sampled from the OC compliance point (F5) prior to discharge and during the discharge period. In general, results indicate that leachate is highly diluted and treated by the time it reaches the discharge point. However, exceedances of the OC criteria was noted for iron at a few sampling events. Other than iron, all sampling parameters were below the OC discharge criteria at the compliance point.

Phytoremediation soil samples were taken once in 2019. All results are compliant with the criteria and do not show signs of metals accumulation or excessive salinity in the phytoremediation soil.

SHA recommends that the following measures be taken:

- Continue the groundwater monitoring program as per the OC.
- Continue the surface water monitoring program as per the OC.
- Continue the leachate monitoring program as per the OC.
- Continue the soil sampling program as per the OC.
- Install pressure gauge or flow meter after Pump #5 and ensure that pump data is recorded accurately. Periodically check the pump records to ensure accuracy and ensure that the phytoremediation discharge does not exceed the OC discharge criteria.
- Continue monitoring the iron levels in leachate at the compliance point (F5) to ensure that they do not exceed the OC discharge criteria.
- pH, Redox Potential eH, conductivity, total iron, and dissolved iron samples should be collected at key locations along the leachate treatment chain at raw leachate, raw compost, EQ Pond, Aeration Pond, Sedimentation Pond and Sand Filter discharge locations on a monthly basis.

- Field samples should be collected using a Hach kit to establish a correlation between field iron concentrations and lab concentrations for leachate.
- Ensure that one duplicate sample is collected during each sampling event from one of the discharge points.
- Obtain and keep current, the laboratory precision, accuracy and blank quality control criteria for each laboratory analyzed parameters from the analytical laboratory.
- Develop a dynamic groundwater flow model with MODFLOW software to interpret groundwater flow patterns and leachate plume migration. Realistically, this option would only be necessary if leachate impacts were observed. More monitoring well locations must be added to the network to confirm if the conceptual model is accurate.

9. STATEMENT OF LIMITATIONS

This report has been prepared by Sperling Hansen Associates (SHA) on behalf of the Regional District of Kitimat-Stikine in accordance with generally accepted engineering practices to a level of care and skill normally exercised by other members of the engineering and science professions currently practicing under similar conditions in British Columbia, subject to the time limits and financial and physical constraints applicable to the services.

The report, which specifically includes all tables, charts, and figures, is based on engineering analysis by SHA staff of data compiled during the course of the project. Except where specifically stated to the contrary, the information on which this study is based has been obtained from external sources. This external information has not been independently verified or otherwise examined by Sperling Hansen Associates to determine its accuracy and completeness. Sperling Hansen Associates has relied in good faith on this information and does not accept responsibility of any deficiency, misstatements or inaccuracies contained in the reports as a result of omissions, misinterpretation and/or fraudulent acts of the persons interviewed or contacted, or errors or omissions in the reviewed documentation.

The report is intended solely for the use of the Regional District of Kitimat-Stikine. Any use which a third party makes of this report, or any reliance on, or decisions to be made based on it, are the responsibilities of such third parties. Sperling Hansen Associates does not accept any responsibility for other uses of the material contained herein nor for damages, if any, suffered by any third party because of decisions made or actions based on this report. Copying of this intellectual property for other purposes is not permitted.

The findings and conclusions of this report are valid only as of the date of this report. The interpretations presented in this report and the conclusions and recommendations that are drawn are based on information that was made available to Sperling Hansen Associates during the course of this project. Should additional new data become available in the future, Sperling Hansen Associates should be requested to re-evaluate the findings of this report and modify the conclusions and recommendations drawn, as required.

Report Prepared By:

Carly Wolfe, EIT Bioresource Engineer Dr. Iqbal Bhuiyan, P.Eng. Sr. Environmental Engineer

Report Reviewed By:

David Kvick,

Environmental Scientist

10.REFERENCES

Clague, J J. (1983) Geological Survey of Canada, "A" Series Map 1557A, 1983, 5 sheets, https://doi.org/10.4095/109236

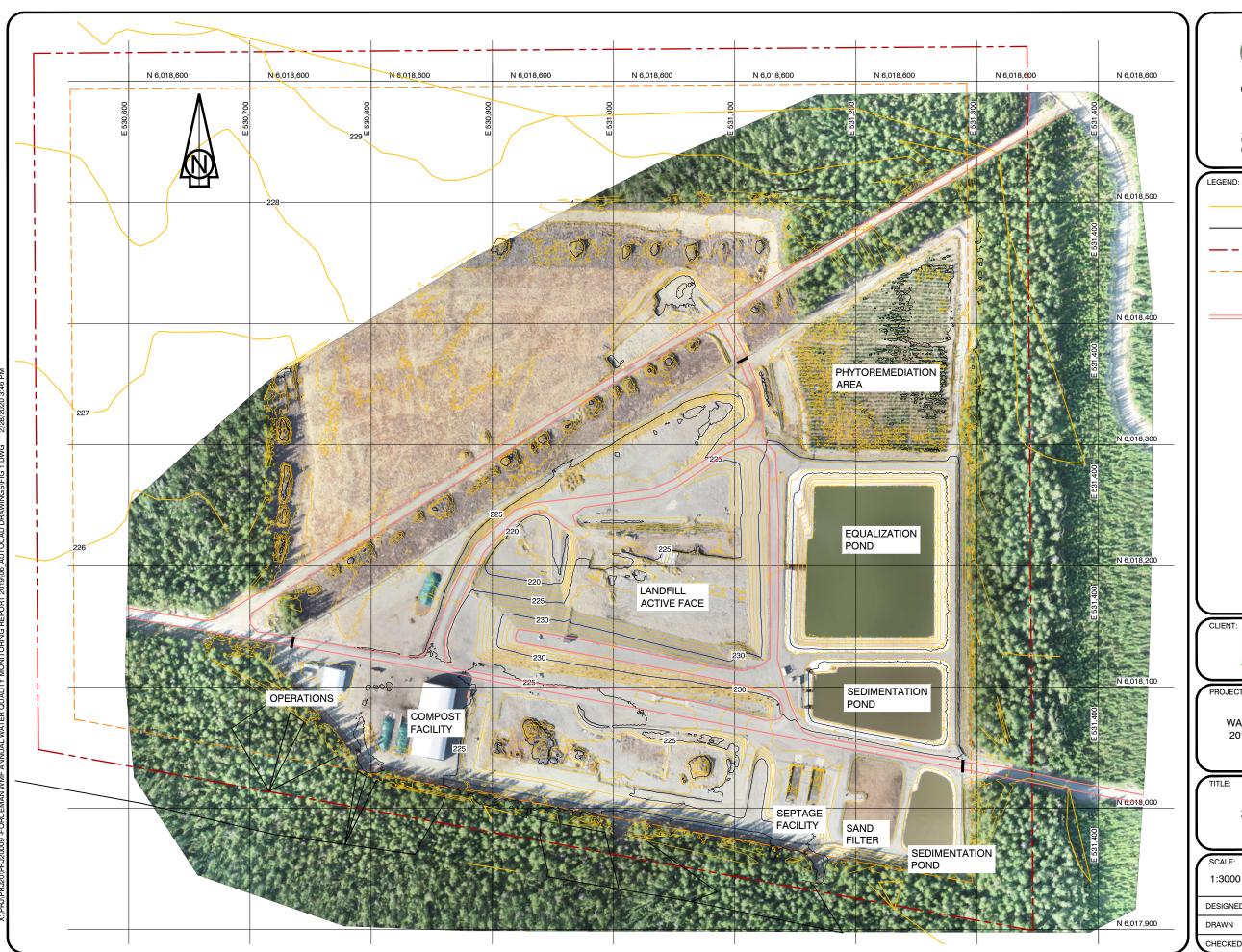
Contaminated Sites Regulation (CSR) (2019). Environmental Management Act. B.B. Reg. 253/2016, January 24, 2019.

Ministry of Environment and Climate Change Strategy (ENV) (2019). Operational Certificate 17227 for the Forceman Ridge Regional Landfill, last amended September 19, 2019.

Ministry of Environment (2013) BC Field Sampling Manual 2013. <a href="https://www2.gov.bc.ca/gov/content/environment/research-monitoring-reporting/monitoring/laboratory-standards-quality-assurance/bc-field-sampling-manual-reporting-monitoring-reporting-manual-

Nelson, J.L., (2009). Terrace Regional Mapping Project, Year 4: Extension of Paleozoic Volcanic Belt and Indicators of Volcanogenic Massive Sulphide-style Mineralization near Kitimat, British Columbia (NTS 103I/02, 07).

Prov. B.C. (2017) iMapBC https://maps.gov.bc.ca/ess/hm/imap4m/


Prov. B.C. (2017) Regulation of the Ministry of Environment and Climate Change Strategy, Environmental Management Act. S.B.C. 2003, C. 53, ss and 139.

Sperling Hansen Associates (2015). Forceman Ridge Regional Landfill Design, Operations and Closure Plan PRJ1440.

Sperling Hansen Associates (2018). Forceman Waste Management Facility 2017 Annual Monitoring Report PRJ17027.

Appendix A: Figures

Landfill Services Group

- Landfill Siting
 Design & Operations Plans
 Landfill Closure
 Environmental Monitoring

#8 - 1225 Keith Road East North Vancouver, B.C. V7J 1J3 Phone: (604) 986-7723

5m EXISTING CONTOUR

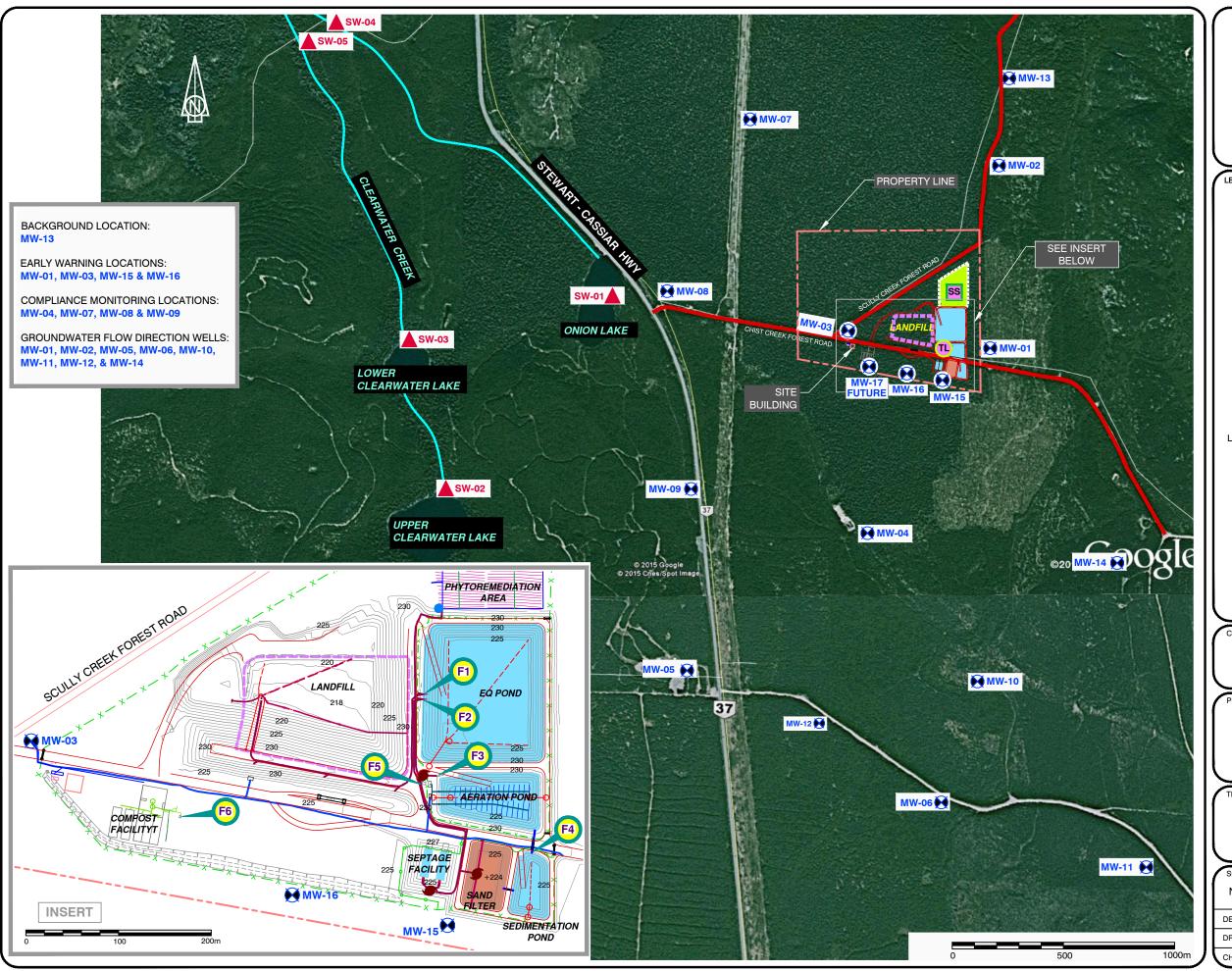
1m EXISTING CONTOUR

LEGAL BOUNDARY

50m OFFSET FROM LEGAL BOUNDARY

EXISTING ROAD

CLIENT:



Regional District of Kitimat-Stikine

FORCEMAN RIDGE WASTE MANAGEMENT FACILITY 2019 ANNUAL WATER QUALITY MONITORING REPORT

2019 TOPOGRAPHY

	SCALE:	DATE:		PROJECT NO:	`
	1:3000		/02/29 /mm/dd	PRJ 20009	
	DESIGNED	TS	DRAWIN	G NO:	
	DRAWN	NL	FI	GURE 1	
J	CHECKED	TS			,

Landfill Services Group

- Landfill Siting
 Design & Operations Plans
 Landfill Closure
 Environmental Monitoring

#8 - 1225 Keith Road East North Vancouver, B.C. V7J 1J3

Phone: (604) 986-7723

ROAD PROPERTY LINE

CREEK

LANDFILL BOUNDARY

MONITORING WELL SURFACE WATER

MONITORING LOCATION

TREATED LEACHATE SAMPLE SITE AT CYCLONE

TL

SOIL SAMPLE LOCATION

LEACHATE SAMPLING LOCATIONS:

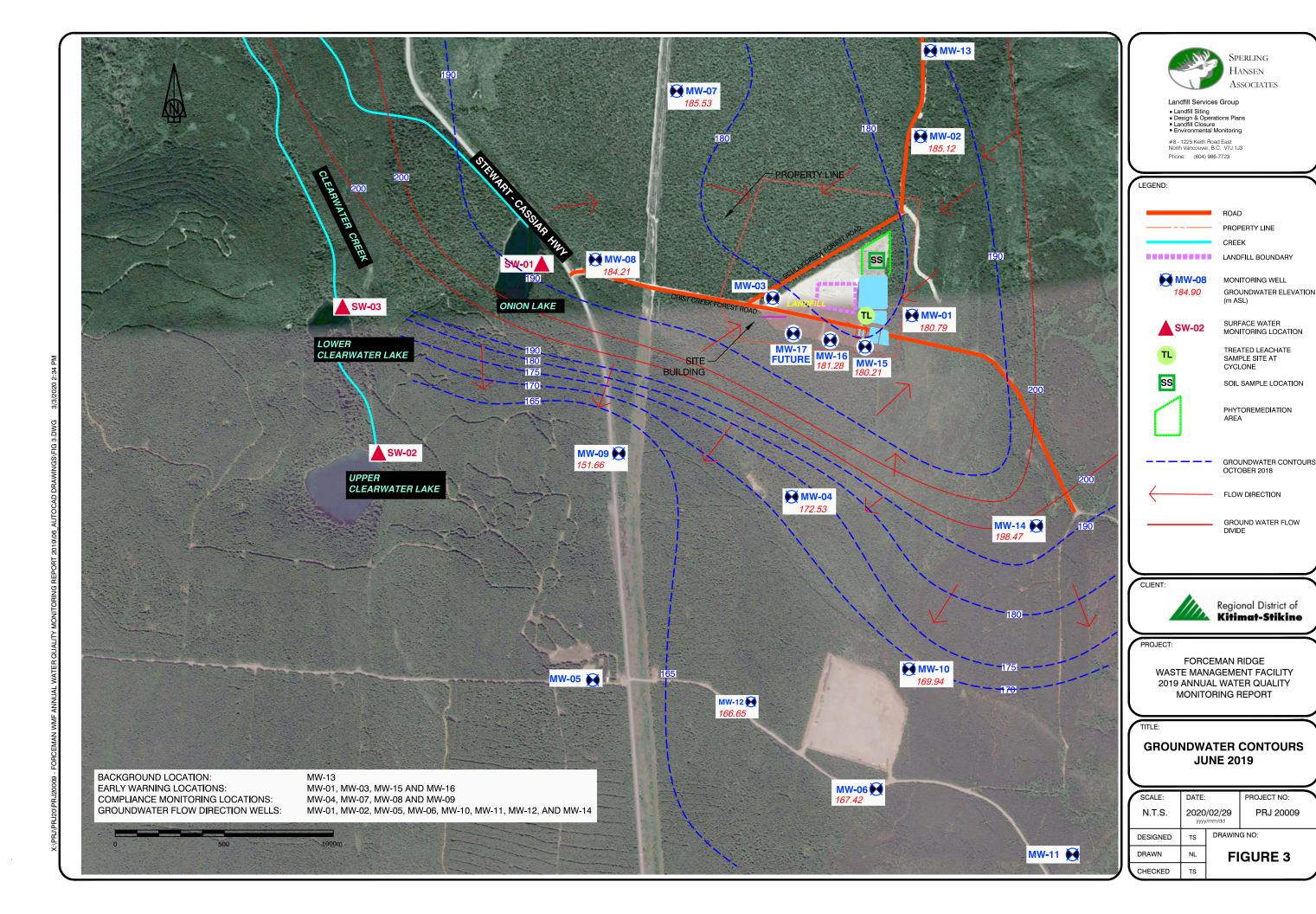
RAW LANDFILL LEACHATE

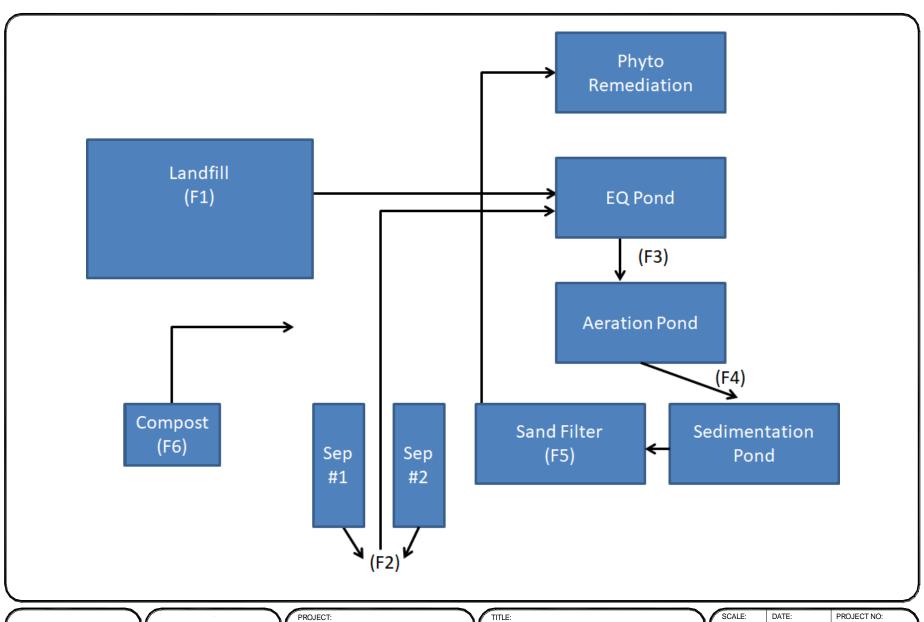
AERATION POND INLET

SEDIMENTATION POND INLET

SAND CYCLONE (E249852)

COMPOST FACILITY


Regional District of Kitimat-Stikine


PROJECT:

FORCEMAN RIDGE WASTE MANAGEMENT FACILITY 2019 ANNUAL WATER QUALITY MONITORING REPORT

FORCEMAN LANDFILL MONITORING PROGRAM

SCALE:	DATE:		PROJECT NO:
N.T.S.		/02/29 //mm/dd	PRJ 20009
DESIGNED	TS	DRAWIN	G NO:
DRAWN	NL	FI	GURE 2
CHECKED	TS)

Forceman Ridge WMF 2019

Annual Water Quality

Monitoring Report

Leachate Monitoring Locations

SCALE:	DATE:		PROJECT NO:
N/A		/02/21 /mm/dd	PRJ20009
DESIGNED	AM	DRAWING	S NO:
DRAWN	AM	F	igure 4
CHECKED	IB]	

Appendix B: Tables

Table 1. Forceman Landfill Monitoring Program

Monitoring	MOE		Top of Well	Stick-up	Well Bottom	Well Depth		Water	Well	Pump	Sampling	Sampling	Field	OC/RDKS	Description	Comments
Location	Identifyer	Elevation	Elevation		Elevation		Water*	Column	Type	Installed	Technique	Frequency	Readings	Locations		
		(mASL)	(m)	(m)	(m)	(m)	(m)	(m)		(y/n)						
Groundwater Moni																
MW-1	E251530	226.69	227.63	0.94	164.63	63.1	44.01	19.1	6"	Y	1" SS Pump	Quarterly	Monthly	OC	Early Warn, (WL, cond, temp - monthly)	
MW-2	E251531	230.43	231.43	1.00	171.43	60.0	43.69	16.3	6"				Quarterly	OC	GW Level, Cond, Temp - Quarterly	
MW-3	E251532	225.72	226.68	0.96	168.68	57.0	42.54	14.5	6"	Y	Supply Well Pump	Quarterly	Monthly	OC	Early Warn, (WL, cond, temp - monthly)	Supply well. Tap in site trailer.
MW-4	E251533	196.98	198.24	1.26	169.28	24.8	23.58	1.2	6"	Y	1.66" PVC Bladder	Quarterly	Monthly	OC	Compliance, (WL, cond, temp - monthly)	
MW-5	E251534	209.33	210.46	1.13	151.02	59.4	45.37	14.1	6"	Y	Existing supply pump	Annually	Annually	OC	Ski Club Supply Well, GW Level, Cond, Temp - Annually	Annual water sampling
MW-6	E251535	200.30	201.53	1.23	166.48	35.1	31.93	3.1					Annually	OC	GW Level	
MW-7	E287379	229.93	230.82	0.89	164.63	44.2	44.35	-0.2	2"	Y	1" SS Pump	Quarterly	Monthly	OC	Compliance, (WL, cond, temp - monthly)	
MW-8	E287380	194.62	195.62	1.00	171.43	14.4	9.60	4.8	2"	Y	PVC Bladder	Quarterly	Monthly	OC	Compliance, (WL, cond, temp - monthly)	Has both barologger and level logger
MW-9	E287381		203.4		168.68	51.8	50.02	1.8	2"	Y	1" SS Pump	Quarterly	Monthly	OC	Compliance, (WL, cond, temp - monthly)	Level logger
MW-10	E287382		198.94		169.28	27.7	26.60	1.1	2"	Y	1" SS Pump		Annually	OC	GW Level	
MW-11	E287383		202.89		151.02	51.9	35.89	16.0			•		Annually	OC	GW Level	
MW-12	E287384	209.65	210.49	0.84	166.48	44.5	41.89	2.6	2"	Y	1" SS Pump		Annually	OC	GW Level	
MW-13	E287385	231.54	232.48	0.94		44.2	Dry	Dry	2"	Y	1" SS Pump	Quarterly	Monthly	OC	Background	
MW-14	E287386	222.91	223.88	0.97			24.20	<u> </u>					Annually	OC	GW Level	
MW-15-old	E302210					45.72	Dry	-	2" PVC		Bailer	Quarterly		OC	Early Warn, (WL, cond, temp - monthly)	
MW15-new						61.53	44.33	17.198824	2" PVC			,	Monthly		J / / / 1	
MW-16-old	E302211					45.10	44.79	-	2" PVC		Bailer	Quarterly	,	OC	Early Warn, (WL, cond, temp - monthly)	
MW16-new						61.55	44.93	16.621765	2" PVC				Monthly		, , , , , , , , , , , , , , , , , , ,	
MW-17	Future Well													OC	Early Warn.	Future well
Surface Water Mon		s														
SW-1	E273828											Quarterly	Monthly	OC	Onion Lake	
SW-2	E273829											,	Monthly	OC	Upper Clearwater	
SW-3	E273831											Quarterly	Monthly	OC	Lower Clearwater	
SW-4	E306587											Quarterly	Monthly	OC	Ck. from Onion Lk	
SW-5	E296117											Quarterly	Monthly		Clearwater Ck.	
Leachate Monitorin												(
F1												Quarterly	Monthly	RDKS	Raw leachate	
F2												Quarterly			Raw septage and leachate from composting	
F3												Quarterly	Monthly		Aeration pumping well into aeration pond	
F4												Quarterly	Monthly		Sedimentation pond gravity inflow	
F5	E249852											Quarterly	Monthly		Sand filter pumping well	Treated leachate to phyto.
Soil Sampling	L247032											Quarterly	THOITIN	CORDINA	Sand Intel pumping wen	Treated leachate to phyto.
Phyto Remediation	E306624											Annually	_	OC	Annual testing for metals before leachate application	
i nyto Kemedianon	E300024											Ailliuaily	-	00	Annual coding for metals before leachate application	
*average readings from	<u> </u>	<u> </u>														

^{*}average readings from historical sampling events

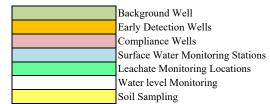


Table 3: Groundwater Quality Results Sampling Location MW-13 (E287385)

		BC MoE Guidelines	22-Oct-12	03-Apr-13	12-Jun-13	05-Apr-17	06-Jul-17	14-Nov-17
ïeld	Units	CSR-DW (2)						
Conductivity H	uS/cm	-	-	-	-	6.5	81 7.8	17.7 5.88
emperature emperature	pH °C	-	-	-	-	4.5	4.7	4.1
Dissolved Oxygen	mg/L	-	-	-	-	-	4.3	11
Vater elevation Analyte	m Units	-	-	-	-	-	-	-
Conductivity	uS/cm	-	17.2	-	-	145		-
Hardness (as CaCO3)	mg/L	-	-	27.3	-	-	25.5	11.6
oH	pH	-	6	6.7	-	8	8	6.86
Total Suspended Solids Total Dissolved Solids	mg/L mg/L	-	- 8	-	_	1.1 82		
Alkalinity, Total (as CaCO3)	mg/L	-	10.6	32	56.7	-	37	12.2
Ammonia, Total (as N)	mg/L	-	ND	-	< 0.03	< 0.03	< 0.03	0.0127
Total Nitrogen as N Bromide (Br)	mg/L mg/L	-	0.25	-	-	-		
Chloride (Cl)	mg/L	250 ⁽²⁾	ND	ND	-	1.1	1.4	< 0.50
Fluoride (F)	mg/L	1.5 (2)	ND	ND	-	-	< 0.10	0.023
Nitrate (as N)	mg/L	10 (2)	0.047	0.057	-	< 0.01	< 0.01	0.14
Nitrite (as N)	mg/L	1.0 (2)	0.0052	ND	-	-	0.15	< 0.0010
Sulfate (SO4)	mg/L	500 ⁽²⁾	-	1.52	-	2.6	2.6	0.48
Total Organic Carbon	mg/L	-	-	ND	-	-	< 0.50	1.89
BOD COD	mg/L mg/L	-	-	-	-	-	_	<20
Dissolved Metals	nig/L	-		-	-	_	-	\20
Aluminum (Al)-Dissolved	mg/L	9.5 (2)	0.0170	0.0096	-	< 0.0050	0.0468	0.0309
Antimony (Sb)-Dissolved	mg/L	$0.006^{(2)}$	ND	0.000082	-	< 0.00010	0.00035	< 0.00010
Arsenic (As)-Dissolved	mg/L	0.01 ⁽²⁾	ND	0.00068	-	0.00159	< 0.00050	< 0.00010
Barium (Ba)-Dissolved	mg/L	1.0(2)	0.0145	0.0101	-	0.018	< 0.0050	0.0187
Beryllium (Be)-Dissolved	mg/L	0.008(2)	ND	ND	-	<0.00010	<0.00010	< 0.00010
Bisumuth - Dissolved	mg/L	(2)	ND	ND	-	<0.00010	<0.00010	<0.000050
Boron (B)-Dissolved	mg/L	5.0 ⁽²⁾	ND 0.000053	ND 0.000127	-	<0.004	<0.0050 0.00008	< 0.010
Cadmium (Cd)-Dissolved Calcium (Ca)-Dissolved	mg/L mg/L	0.005 ⁽²⁾	0.000053	0.000127	-	<0.00001	0.00008 8.92	0.0000119 4.05
Cessium - Di	mg/L mg/L	-	-	-	-	-	- 0.74	- 4.03
Chromium (Cr)-Dissolved	mg/L	0.05 - 6.0 (2)	ND	ND	-	< 0.0005	<0.00050	< 0.00010
Cobalt (Co)-Dissolved	mg/L	0.001 (2)	ND	0.000022	-	<0.00005	< 0.00010	< 0.00010
Copper (Cu)-Dissolved	mg/L	1.5 ⁽²⁾ AO	0.00120	0.02020	-	< 0.0002	0.00033	< 0.00020
ron (Fe)-Dissolved	mg/L	6.5 ⁽²⁾	ND	ND	-	< 0.010	< 0.010	< 0.010
ead (Pb)-Dissolved	mg/L	0.01(2)	ND	0.000159	-	< 0.0001	< 0.00010	< 0.000050
Lithium (Li)-Dissolved	mg/L	0.008 (2)	ND	ND	-	0.001	0.00012	< 0.0010
Magnesium (Mg)-Dissolved	mg/L	- (2)	0.290	0.860	-	1.82	0.21	0.370
Manganese (Mn)-Dissolved	mg/L	1.5 (2)	0.0036	0.00937	-	0.00026	0.00287	0.00121
Mercury (Hg)-Dissolved Molybdenum (Mo)-Dissolved	mg/L	0.001 ⁽²⁾ 0.25 ⁽²⁾	ND ND	ND 0.000059	-	<0.00002 0.0003	<0.000020 0.00471	<0.0000050 <0.000050
Vickel (Ni)-Dissolved	mg/L mg/L	0.08 (2)	- ND	0.000039	-	<0.0003	0.00021	<0.00050
Phosphorus - Dissolved	mg/L	-	-	-	-	<0.002	< 0.050	<0.050
Potassium (K)-Dissolved	mg/L	-	-	-	-	-	0.87	0.225
Rubidium - (Rb)- Dissolved	mg/L	-	-	-	-	-	-	-
Selenium (Se)-Dissolved	mg/L	0.01 (2)	ND	ND	-	<0.00050	<0.00050	0.000076
Silicon - Dissolved Silver (Ag)-Dissolved	mg/L mg/L	0.02 (2)	2.98 ND	3.21 ND	-	4.8 <0.00005	<1.0 <0.000050	2.98 <0.000010
Sodium (Na)-Dissolved	mg/L	200(2)	1.02	1.28	-	1.69	5.55	0.825
Strontium - Dissolved	mg/L	-	0.0375	0.0605	-	0.0864	0.0629	0.0510
Sulfur- Dissolved	mg/L	-	-	-	-	<3.0	<3.0	< 0.50
Fellurium (Te) - Dissolved Fhallium (Tl)-Dissolved	mg/L mg/L	-	-	-	-	<0.00020 <0.00002	<0.00020 <0.000020	<0.00020 <0.000010
Thorium (Th)- Dissolved	mg/L	-	-	-	-	<0.00010	<0.00010	< 0.000010
Γin (Sn)-Dissolved	mg/L	2.5 (2)	ND	ND	-	< 0.00020	0.00975	< 0.00010
Γitanium (Ti)-Dissolved	mg/L	-	-	-	-	-	< 0.0050	< 0.00030
Tungsten (W) - Dissolved	mg/L	0.003 (2)	-	-	-	-	-	< 0.00010
Jranium (U)-Dissolved	mg/L	0.020	ND	0.000044	-	0.0001	<0.000020	-
Vanadium (V)-Dissolved Zinc (Zn)-Dissolved	mg/L mg/L	0.020 ⁽²⁾ 3.0 ⁽²⁾	ND ND	ND 0.379	-	< 0.0010	<0.0010 <0.0040	-
Zirconium - Dissolved	mg/L	3.0	ND	0.379 ND	-	<0.0040 <0.00010	<0.00010	-
Volatile Organic Compounds (Water)	mg 2		1,12	-		10.00010	-0.00010	
Benzene	mg/L	0.005 (2)	-	-	-	-	-	-
Bromodichloromethane	mg/L	0.1 ⁽²⁾	-	-	-	-	-	-
Bromoform	mg/L	0.1(2)	-	-	-	-	-	-
Carbon Tetrachloride	mg/L	0.002 ⁽²⁾	-	-	-	-	-	-
Chlorobenzene	mg/L	0.08 ⁽²⁾	-	-	-	-	-	-
Dibromochloromethane Chloroothom	mg/L	0.1 ⁽²⁾	-	-	-	-	-	-
Chloroethane Chloroform	mg/L mg/L	0.1 ⁽²⁾	-	-	-	-	-	-
Chloromethane	mg/L	-	-	-	-	-	-	-
,2-Dichlorobenzene	mg/L	0.2 ⁽²⁾	-	-	-	-	-	-
,3-Dichlorobenzene	mg/L	-	-	-	-	-	-	-
,4-Dichlorobenzene	mg/L	0.005 ⁽²⁾	-	-	-	-	-	-
,1-Dichloroethane	mg/L	0.03 ⁽²⁾	-	-	-	-	-	-
,2-Dichloroethane	mg/L	0.005 ⁽²⁾	-	-	-	-	-	-
,1-Dichloroethylene	mg/L	$0.014^{(2)}$ $0.008^{(2)}$	-	-	-	-	-	-
is-1,2-Dichloroethylene rans-1,2-Dichloroethylene	mg/L mg/L	0.008 ⁽²⁾	-	-	-	-	-	-
Dichloromethane	mg/L mg/L	0.05 ⁽²⁾	-	-	-	-	-	-
,2-Dichloropropane	mg/L	0.0045 ⁽²⁾	-	-	-	-	-	-
is-1,3-Dichloropropylene	mg/L	-	-	-	-	-	-	-
rans-1,3-Dichloropropylene	mg/L	-	-	-	-	-	-	-
,3-Dichloropropene (cis & trans)	mg/L	0.0015 ⁽²⁾	-	-	-	-	-	-
Ethylbenzene	mg/L	0.14 ⁽²⁾	-	-	-	-	-	-
Methyl t-butyl ether (MTBE)	mg/L	0.095 ⁽²⁾	-	-	-	-	-	-
Styrene	mg/L	0.8 ⁽²⁾	-	-	-	-	-	-
,1,1,2-Tetrachloroethane	mg/L	0.006 ⁽²⁾	-	-	-	-	-	-
,1,2,2-Tetrachloroethane	mg/L	0.008 ⁽²⁾	-	-	-	-	-	-
Tetrachloroethylene	mg/L	0.03 ⁽²⁾	-	-	-	-	-	-
Toluene	mg/L	0.06 ⁽²⁾ 8 ⁽²⁾	-	-	-	-	-	-
,1,1-Trichloroethane ,1,2-Trichloroethane	mg/L mg/L	0.003 ⁽²⁾	-	-	-	-	-	-
richloroethylene	mg/L mg/L	0.003 ⁽²⁾ 0.005 ⁽²⁾	-	-	-		-	-
richloroethylene	mg/L mg/L	0.005 ⁽²⁾	-	-	-	-	-	-
/inyl Chloride	mg/L mg/L	0.002 ⁽²⁾	-	-	-	-	-	-
ortho-Xylene	mg/L mg/L	- 0.002	-	-	-	-	-	-
	mg/L	-	<u> </u>	-	-	_	-	-
neta- & para-Xylene	mg/L							

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2, last updated January 2019
 (3) All criteria limits for BCWQG Drinking Quality Guidelines based on Total Metal Concentration except Aluminum (Dissolved)
 (4) BC MoE Water Quality Guidelines for Protection of Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 (c) Limit for dissolved metals, not total metals
 (d) Limit dependent upon hardness.
 (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromium VI in sample
 (f) Where hardness data was unavailable, 50 mg/L was assumed
 (g) Maximum value
 (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows
- * Criteria exceeds detection limit MAC = Maximum Acceptable Concentration AO = Aesthetic Objective

Table 4: Groundwater Quality Results Sampling Location MW-1 (E251530)

Table 4: Groundwater Quality Results Sampling Lo	cation www-1 (T 00 1 10	I 05 : 45		I	T 4435 45	I 00 1 10	T 40 7 140	
		BC MoE Guidelines	22-Oct-12	02-Apr-13	05-Apr-17	06-Jul-17	02-Oct-17	14-Nov-17	09-Apr-18	18-Jul-18	20-Nov-18
Field Conductivity	Units uS/cm	CSR-DW (2)	-	-	129	28.8	34.4	32.6	29.3	36	42
pH Dissolved Oxygen	pH mg/L	-	-	-	7.9	8.3 2.5	6.49	6.33 9.8	5.81 8.6	5.75 7.3	6.15 0.8
Temperature Water elevation	°C	-	-	-	5.8	6.8	5	4.7	4.8 45.91	5.1 44.74	5 46.54
Analyte	m Units			-	-	-		-	43.91	77.77	40.54
Conductivity Hardness (as CaCO3)	uS/cm mg/L	-	15.2	10.4	13.1	6.15	58.9	23.1	19.7	19.3	15.8
pH Total Suspended Solids	pH mg/L		6.8	7	6.7 230	6	6.8	7.26	7.52		
Total Dissolved Solids Alkalinity, Total (as CaCO3)	mg/L mg/L	-	7 10.2	13.6	- 18	12	29	27	28.1	1	21.9
Ammonia, Total (as N)	mg/L	-	0.19	-	<0.03	0.06	< 0.03	< 0.005	0.0066	0.0082	<0.0050
Total Nitrogen as N Bromide (Br)	mg/L mg/L	-	0.322	-	-		0.175			< 0.050	< 0.050
Chloride (Cl)	mg/L	250 ⁽²⁾	ND ND	ND ND	<1.0 <0.10	1.3	<1.0	<0.5	<0.50	< 0.50	<0.50
Fluoride (F) Nitrate (as N)	mg/L mg/L	1.5 ⁽²⁾ 10 ⁽²⁾	ND ND	ND ND	0.041	<0.10 0.2	<0.01	0.044 0.156	0.051 0.148	0.047 0.166	0.043 0.166
Nitrite (as N)	mg/L	1.0 (2)	ND	ND	< 0.01	< 0.01	-	< 0.001	< 0.0010	< 0.0010	< 0.0010
Sulfate (SO4) Total Organic Carbon	mg/L mg/L	500 (2)	-	1.06 2.14	0.59	<1.0 1.1	<1.0	0.64 0.52	0.66 3.76	0.65 1.95	0.67 5.2
BOD COD	mg/L mg/L	-	-	-	-		-	<20	<20	<20	23
Dissolved Metals	mg/L		-	-	-	-	-		<20	<20	2.5
Aluminum (Al)-Dissolved Antimony (Sb)-Dissolved	mg/L	9.5 ⁽²⁾ 0.006 ⁽²⁾	ND ND	ND 0.000056	<0.0050 <0.00010	<0.0050 <0.00010	<0.005	0.0024 <0.00010	0.0024	0.0039	0.0038
Arsenic (As)-Dissolved	mg/L mg/L	0.006	ND	0.000201	<0.00010	<0.00010	<0.0002 <0.0005	<0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010
Barium (Ba)-Dissolved	mg/L	1.0(2)	0.0013	0.00155	0.0137	<0.0050	0.0071	0.00683	0.0057	0.00587	0.00563
Beryllium (Be)-Dissolved Bisumuth - Dissolved	mg/L mg/L	0.008 ⁽²⁾	ND ND	ND ND	<0.00010 <0.00010	<0.00010 <0.00010	<0.0001 <0.0001	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050
Boron (B)-Dissolved	mg/L	5.0 ⁽²⁾	ND	ND	0.008	< 0.0050	< 0.005	< 0.010	< 0.010	< 0.010	< 0.010
Cadmium (Cd)-Dissolved Calcium (Ca)-Dissolved	mg/L mg/L	0.005 ⁽²⁾	0.000016	0.000008	0.00002 4.49	0.000034 2.23	0.000023	0.0000573 8.01	0.0000309 6.53	0.0000183 6.33	0.0000939 5.24
Cesium (Cs)- Dissolved	mg/L	-	-	-	-	-	-	-	<0.000010	< 0.000010	<0.000010
Chromium (Cr)-Dissolved Cobalt (Co)-Dissolved	mg/L mg/L	0.05 - 6.0 ⁽²⁾ 0.001 ⁽²⁾	ND ND	ND 0.000764	<0.0005 0.00211	<0.00050 0.0002	<0.0005 0.00014	<0.00010 <0.00010	0.00013 <0.00010	0.00014 <0.00010	0.00012 <0.00010
Copper (Cu)-Dissolved	mg/L	1.5 ⁽²⁾ AO	0.00069	ND	0.0005	0.00022	< 0.0004	< 0.00020	< 0.00020	< 0.00020	0.00024
Iron (Fe)-Dissolved Lead (Pb)-Dissolved	mg/L mg/L	6.5 ⁽²⁾ 0.01 ⁽²⁾	0.0082 ND	0.0923 ND	0.735 <0.0001	<0.010 <0.00010	<0.01 <0.0002	0.012 <0.000050	<0.010 <0.000050	<0.010 <0.000050	0.011 <0.000050
Lithium (Li)-Dissolved	mg/L	0.008 (2)	ND	ND	<0.0001	0.00055	<0.0002	<0.0010	<0.0010	<0.0010	<0.0000
Magnesium (Mg)-Dissolved Manganese (Mn)-Dissolved	mg/L mg/L	- 1.5 ⁽²⁾	0.149 0.374	0.31	0.457	0.213 0.356	0.79 0.032	0.755 0.0198	0.831 0.00776	0.849 0.00517	0.66 0.00575
Mercury (Hg)-Dissolved	mg/L	0.001 ⁽²⁾	ND	ND	<0.00002	<0.000020	< 0.00001	<0.0000050	<0.000776	<0.000000	<0.0000050
Molybdenum (Mo)-Dissolved	mg/L	0.25 ⁽²⁾	ND	0.000284	0.00016	<0.00010	< 0.0001	<0.000050	<0.000050	<0.000050	<0.000050
Nickel (Ni)-Dissolved Phosphorus - Dissolved	mg/L mg/L	0.08 (2)	-	-	0.0065 <0.05	0.00105 <0.050	<0.0004 <0.05	<0.00050 <0.050	<0.00050 <0.050	<0.00050 <0.050	<0.00050 <0.050
Potassium (K)-Dissolved Rubidium (Rb) - Dissolved	mg/L mg/L	<u>-</u>	-	-	0.27	1.09	-	0.270	0.25 0.00036	0.273 0.00039	0.27 0.00037
Selenium (Se)-Dissolved	mg/L	0.01 (2)	ND	0.000056	< 0.00050	< 0.00050	< 0.0005	< 0.000050	< 0.000050	< 0.000050	< 0.000050
Silicon - Dissolved Silver (Ag)-Dissolved	mg/L mg/L	0.02 (2)	0.481 ND	0.22 ND	2.8 <0.00005	1.1 <0.00050	5.4 <0.00005	5.10 <0.000010	5.23 <0.000010	4.93 <0.000010	5.28 <0.000010
Sodium (Na)-Dissolved	mg/L	200 ⁽²⁾	1.70	1.35	1.57	1.95	1.4	1.29	1.4	1.5	1.55
Strontium - Dissolved Sulfur- Dissolved	mg/L mg/L	-	0.0153	0.0326	0.0393 <3.0	0.0161 <3.0	0.0423 <3	0.0439 <0.50	0.0454 <0.50	0.0446 <0.50	0.0408 <0.50
Tellurium - Dissolved Thallium (Tl)-Dissolved	mg/L mg/L	-	-	-	<0.00020 <0.00002	<0.00020 <0.000020	<0.0005 <0.00002	<0.00020 <0.000010	<0.00020 <0.000010	<0.00020 <0.000010	<0.00020 <0.000010
Thorium - Dissolved	mg/L	-	-	-	< 0.00010	< 0.00010	< 0.0001	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Tin (Sn)-Dissolved Titanium (Ti)-Dissolved	mg/L mg/L	2.5 (2)	ND -	ND -	<0.00020 <0.0050	<0.00020 <0.0050	<0.0002	<0.00010 <0.00030	<0.00010 <0.00030	<0.00010 <0.00030	<0.00010 <0.00030
Tungston (W) - Dissolved	mg/L	0.003 (2)	-	-	-	-	-	<0.00010	< 0.00010	< 0.00010	< 0.00010
Uranium (U)-Dissolved Vanadium (V)-Dissolved	mg/L mg/L	0.020 0.020 ⁽²⁾	ND ND	ND ND	<0.00002 <0.0010	<0.000020 <0.0010	<0.00002 <0.001	-	<0.000010 <0.00050	<0.000010 <0.00050	<0.000010 <0.00050
Zinc (Zn)-Dissolved	mg/L	3.0 (2)	ND	ND	0.0178	< 0.0040	< 0.004	-	< 0.0010	< 0.0010	0.0011
Zirconium - Dissolved Volatile Organic Compounds (Water)	mg/L	-	ND	ND -	<0.00010	<0.00010	< 0.0001	-	<0.000060	<0.000060	<0.000060
Benzene	mg/L	0.005 (2)	-	-	-	-	-	-	-	-	-
Bromodichloromethane Bromoform	mg/L mg/L	0.1 ⁽²⁾ 0.1 ⁽²⁾	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride	mg/L	0.002 ⁽²⁾	-	-	-	-	-	-	-	-	-
Chlorobenzene Dibromochloromethane	mg/L mg/L	0.08 ⁽²⁾ 0.1 ⁽²⁾	-	-	-	-	-	-	-	-	-
Chloroethane	mg/L	-	-	-	-	-	-	-	-	-	-
Chloroform Chloromethane	mg/L mg/L	0.1 ⁽²⁾	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene	mg/L	0.2 ⁽²⁾	-	-	-	-	-	-	-	-	-
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/L mg/L	- 0.005 ⁽²⁾	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane	mg/L	0.03 ⁽²⁾	-	-	-	-	-	-	-	-	-
1,2-Dichloroethane 1,1-Dichloroethylene	mg/L mg/L	0.005 ⁽²⁾ 0.014 ⁽²⁾	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethylene	mg/L	0.008 ⁽²⁾	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	mg/L	0.08 ⁽²⁾	-	-	-	-	-	-	-	-	-
Dichloromethane 1,2-Dichloropropane	mg/L mg/L	0.05 ⁽²⁾ 0.0045 ⁽²⁾	-	-	-	-	-	-	-	-	-
cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene	mg/L mg/L	-	-	-	-	-	-	-	-	-	-
1,3-Dichloropropene (cis & trans)	mg/L	0.0015 ⁽²⁾	-	-	-	-	-	-	-	-	-
Ethylbenzene Methyla hydral other (MTDE)	mg/L	0.14 ⁽²⁾	-	-	-	-	-	-	-	-	-
Methyl t-butyl ether (MTBE) Styrene	mg/L mg/L	$0.095^{(2)}$ $0.8^{(2)}$	-	-	-	-	-	-	-	-	-
1,1,1,2-Tetrachloroethane	mg/L	$0.006^{(2)}$	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane Tetrachloroethylene	mg/L mg/L	0.008 ⁽²⁾ 0.03 ⁽²⁾	-	-	-	-	-	-	-	-	-
Toluene	mg/L mg/L	0.03 ⁽²⁾	-	-	-	-			-	-	
1,1,1-Trichloroethane	mg/L	8(2)	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane Trichloroethylene	mg/L mg/L	$0.003^{(2)}$ $0.005^{(2)}$	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	mg/L	1 ⁽²⁾	-	-	-	-	-	-	-	-	-
Vinyl Chloride ortho-Xylene	mg/L mg/L	0.002 ⁽²⁾	-	-	-	-	-	-	-	-	-
meta- & para-Xylene	mg/L	-	-	-	-	-	-	-	-	-	-
Xylenes	mg/L	$0.09^{(2)}$	-	-	-	-	-	-	-	-	-

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2, last updated January 2019
 (3) All criteria limits for BCWQG Drinking Quality Guidelines based on Total Metal Concentration except Aluminum (Dissolved)
 (4) BC MoE Water Quality Guidelines for Protection of Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 'C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 (c) Limit for dissolved metals, not total metals
 (d) Limit dependent upon hardness.
 (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromium VI in sample
 (f) Where hardness data was unavailable, 50 mg/L was assumed
 (g) Maximum value
- (g) Maximum value
 (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows
- * Criteria exceeds detection limit

 MAC = Maximum Acceptable Concentration

 AO = Aesthetic Objective

BC Contaminated Sites Regulation Water Quality Guidelines for Drinking Water CSR-DW

SPERLING HANSEN ASSOCIATES

Table 4: Groundwater Quality Results Sampling Location MW-1 (E251530)

		BC MoE Guidelines	25-Mar-19	26-Jun-19
Field	Units	CSR-DW (2)		
Conductivity bH	uS/cm pH	-	28.3 6.74	38 6.29
Dissolved Oxygen	mg/L	-	10.5	9.5
Temperature Water elevation	°C m	-	5 46.84	5.4 46.83
Analyte Conductivity	Units uS/cm			
Hardness (as CaCO3)	mg/L	-	14	14.1
bH Γotal Suspended Solids	pH mg/L	-	6.68	7.34
Fotal Dissolved Solids Alkalinity, Total (as CaCO3)	mg/L mg/L	-	15.7	15.3
Ammonia, Total (as N)	mg/L	-	0.0117	< 0.0050
Fotal Nitrogen as N Bromide (Br)	mg/L mg/L	-	< 0.050	<0.050
Chloride (Cl)	mg/L	250 (2)	0.56	< 0.50
Fluoride (F) Nitrate (as N)	mg/L mg/L	1.5 ⁽²⁾ 10 ⁽²⁾	0.034 0.0216	0.047
Nitrite (as N)	mg/L	1.0 (2)	< 0.0010	0.003
Sulfate (SO4)	mg/L	500 ⁽²⁾	1.07	0.78
Total Organic Carbon BOD	mg/L mg/L	-	4.46 -	3.19
COD Dissolved Metals	mg/L	-	<20	<20
Aluminum (Al)-Dissolved	mg/L	9.5 ⁽²⁾	0.0035	0.0032
Antimony (Sb)-Dissolved Arsenic (As)-Dissolved	mg/L mg/L	$0.006^{(2)}$ $0.01^{(2)}$	<0.00010	<0.00010
Barium (Ba)-Dissolved	mg/L	1.0 ⁽²⁾	<0.00010 0.00551	<0.00010 0.00603
Beryllium (Be)-Dissolved	mg/L	0.008 ⁽²⁾	< 0.00010	< 0.00010
Bisumuth - Dissolved Boron (B)-Dissolved	mg/L mg/L	5.0 ⁽²⁾	<0.000050 <0.010	<0.00050 <0.010
Cadmium (Cd)-Dissolved	mg/L	0.005 ⁽²⁾	0.0000906	0.00018
Calcium (Ca)-Dissolved Cesium (Cs)- Dissolved	mg/L mg/L	-	4.74 <0.000010	4.81 <0.000010
Chromium (Cr)-Dissolved	mg/L	0.05 - 6.0 (2)	0.00016	0.00014
Cobalt (Co)-Dissolved Copper (Cu)-Dissolved	mg/L mg/L	0.001 ⁽²⁾ 1.5 ⁽²⁾ AO	<0.00010 <0.00020	<0.00010 <0.00020
ron (Fe)-Dissolved	mg/L	6.5 ⁽²⁾	0.00020	< 0.010
Lead (Pb)-Dissolved	mg/L	0.01 ⁽²⁾	<0.000050	< 0.000050
Lithium (Li)-Dissolved Magnesium (Mg)-Dissolved	mg/L mg/L	0.008 (2)	<0.0010 0.534	<0.0010 0.512
Manganese (Mn)-Dissolved	mg/L	1.5 (2)	0.00319	0.00364
Mercury (Hg)-Dissolved Molybdenum (Mo)-Dissolved	mg/L mg/L	0.001 ⁽²⁾ 0.25 ⁽²⁾	0.0000057 <0.000050	<0.000050 <0.000050
Nickel (Ni)-Dissolved	mg/L	0.08 (2)	< 0.00050	< 0.00050
Phosphorus - Dissolved Potassium (K)-Dissolved	mg/L mg/L	-	<0.050 0.255	<0.050 0.263
Rubidium (Rb) - Dissolved	mg/L	-	0.00037	0.00041
Selenium (Se)-Dissolved Silicon - Dissolved	mg/L mg/L	0.01 (2)	<0.000050 5.47	<0.000050 5.03
Silver (Ag)-Dissolved	mg/L	0.02 (2)	<0.000010	< 0.000010
Sodium (Na)-Dissolved Strontium - Dissolved	mg/L mg/L	200 ⁽²⁾	1.4 0.0434	1.49 0.0465
Sulfur- Dissolved Fellurium - Dissolved	mg/L	-	<0.50 <0.00020	<0.50 <0.00020
Fhallium (Tl)-Dissolved	mg/L mg/L	-	< 0.000010	< 0.000010
Γhorium - Dissolved Γin (Sn)-Dissolved	mg/L mg/L	2.5 ⁽²⁾	<0.00010 <0.00010	<0.00010 <0.00010
Titanium (Ti)-Dissolved	mg/L	-	<0.00030	< 0.00030
Tungston (W) - Dissolved Uranium (U)-Dissolved	mg/L mg/L	0.003 ⁽²⁾ 0.020	<0.00010 <0.000010	<0.00010 <0.000010
Vanadium (V)-Dissolved	mg/L	0.020 (2)	<0.00050	<0.00050
Zinc (Zn)-Dissolved Zirconium - Dissolved	mg/L mg/L	3.0 (2)	<0.0010 <0.00060	<0.0010 <0.00020
Volatile Organic Compounds (Water)	mg/L		\0.000000	<0.00020
Benzene Bromodichloromethane	mg/L mg/L	0.005 ⁽²⁾ 0.1 ⁽²⁾	-	-
Bromoform	mg/L	0.1 ⁽²⁾	-	-
Carbon Tetrachloride	mg/L	0.002 ⁽²⁾	-	-
Chlorobenzene Dibromochloromethane	mg/L mg/L	$0.08^{(2)}$ $0.1^{(2)}$	-	-
Chloroethane	mg/L	-	-	-
Chloroform Chloromethane	mg/L mg/L	0.1 ⁽²⁾	-	-
,2-Dichlorobenzene	mg/L	0.2 ⁽²⁾	-	-
,3-Dichlorobenzene ,4-Dichlorobenzene	mg/L mg/L	- 0.005 ⁽²⁾	-	-
,1-Dichloroethane	mg/L	0.003 ⁽²⁾	-	-
,2-Dichloroethane	mg/L	0.005 ⁽²⁾	-	-
,1-Dichloroethylene :is-1,2-Dichloroethylene	mg/L mg/L	$0.014^{(2)}$ $0.008^{(2)}$	-	-
rans-1,2-Dichloroethylene	mg/L	$0.08^{(2)}$	-	-
Dichloromethane ,2-Dichloropropane	mg/L mg/L	0.05 ⁽²⁾ 0.0045 ⁽²⁾	-	-
is-1,3-Dichloropropylene	mg/L	-	-	-
rans-1,3-Dichloropropylene ,3-Dichloropropene (cis & trans)	mg/L mg/L	- 0.0015 ⁽²⁾	-	-
Ethylbenzene	mg/L mg/L	0.0015 ⁽²⁾	-	-
Methyl t-butyl ether (MTBE)	mg/L	0.095 ⁽²⁾	-	-
Styrene ,1,1,2-Tetrachloroethane	mg/L mg/L	$0.8^{(2)}$ $0.006^{(2)}$	-	-
,1,2,2-Tetrachloroethane	mg/L	0.008 ⁽²⁾	-	-
Fetrachloroethylene	mg/L	0.03 ⁽²⁾	-	-
Toluene ,1,1-Trichloroethane	mg/L mg/L	0.06 ⁽²⁾ 8 ⁽²⁾	-	-
,1,2-Trichloroethane	mg/L	0.003 ⁽²⁾	-	-
Frichloroethylene	mg/L	0.005 ⁽²⁾	-	-
/inyl Chloride	mg/L mg/L	0.002 ⁽²⁾	-	-
ortho-Xylene	mg/L	-	-	-
neta- & para-Xylene	mg/L	- 0.09 ⁽²⁾	-	-

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2, last updated Janua
 (3) All criteria limits for BCWQG-Drinking Quality Guidelines based on Total Metal Concentrat,
 (4) BC MoE Water Quality Guidelines for Protection of Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 (c) Limit for dissolved metals, not total metals
 (d) Limit dependent upon hardness.
 (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromiu
 (f) Where hardness data was unavailable, 50 mg/L was assumed
 (g) Maximum value

- (g) Maximum value
 (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 1
- * Criteria exceeds detection limit

 MAC = Maximum Acceptable Concentration

 AO = Aesthetic Objective

CSR-DW

BC Contaminated Sites Regulation Water

Table 5: Groundwater Quality Results Sampling Location MW-3 (E251532)

		BC MoE Guidelines	22-Oct-12	02-Apr-13	06-Apr-17	06-Jul-17	02-Oct-17	14-Nov-17	10-Apr-18	20-Nov-18	25-Mar-19	26-Jun-19
	** 1:		22 011 12	02.1p. 10	00 1p1 17	00 041 17	02 000 17	111,0717	10 11p1 10	20 1101 10	20 1/111 17	20 0411 19
Field Conductivity	Units uS/cm	CSR-DW (2)	-	-	132	108	82	78.6	66.5	79.9	79.6	99.6
pH Dissolved Oxygen	pH mg/L	-	-	-	7.6 12	8.7 16.6	8.15 6	8.92 7.6	7.33 8.2	7.9 0.6	8.15 8.8	7.98 6.8
Temperature	°C	-	-	-	-	3.7	-	3	4.6	8.1	3.2	13.9
Water elevation Analyte	m Units	-	-	-	-	-	-	-	44.53		-	-
Conductivity Hardness (as CaCO3)	uS/cm mg/L	-	29.3	14.9	62	52.5	121	54.1	47.3	60	53.6	67.6
рН	pН	-	8.7	8.7	8.1	8.8	7.6	8.23	7.93		8.08	8.05
Total Suspended Solids Total Dissolved Solids	mg/L mg/L	-	13	-	<1.0		1 60				-	-
Alkalinity, Total (as CaCO3) Ammonia, Total (as N)	mg/L mg/L	-	17.3 0.03	18.1	65 <0.03	61 <0.03	<0.03	56.4 <0.0050	53.4 0.0055	60.9 <0.0050	58.4 <0.0050	67.7 <0.0050
Total Nitrogen as N	mg/L	-	0.233	-	- 0.03	<0.03	0.0848	V0.0030	0.0055		-	-
Bromide (Br) Chloride (Cl)	mg/L mg/L	250 ⁽²⁾	1	ND	<1.0	<1.0	<1	< 0.50	<0.50	<0.050 <0.50	<0.050 0.9	<0.050 <0.50
Fluoride (F)	mg/L	1.5 (2)	0.13	0.12	< 0.10	< 0.01	-	0.039	0.041	0.045	0.028	0.048
Nitrate (as N)	mg/L	10 ⁽²⁾	ND ND	ND ND	0.034 <0.01	0.01 <0.01	< 0.01	0.0061	0.0104	0.036	0.0473	0.0337
Nitrite (as N) Sulfate (SO4)	mg/L mg/L	500 ⁽²⁾	ND -	1.13	1.5	1.6	1.5	<0.0010 1.15	<0.0010	<0.0010	<0.0010 0.37	<0.0010
Total Organic Carbon	mg/L	-	-	ND	< 0.50	< 0.50	-	< 0.50	< 0.50	< 0.50	<0.50	<0.50
BOD COD	mg/L mg/L	-	-	-	-	-	-	<20	<20	<20	<20	<20
Dissolved Metals Aluminum (Al)-Dissolved	mg/L	9.5 ⁽²⁾	ND	0.0101	< 0.0050	0.0073	0.0146	0.0038	0.0022	0.0024	0.0023	0.0032
Antimony (Sb)-Dissolved	mg/L	0.006 ⁽²⁾	ND	ND	<0.00010	<0.00010	<0.00020	<0.00010	< 0.0022	< 0.0024	< 0.0023	< 0.0032
Arsenic (As)-Dissolved	mg/L	0.01 ⁽²⁾	ND	0.000052	0.00065	0.0006	0.00093	0.00051	0.00058	0.00113	0.00079	0.00098
Barium (Ba)-Dissolved Beryllium (Be)-Dissolved	mg/L mg/L	1.0 ⁽²⁾ 0.008 ⁽²⁾	ND ND	0.00058 ND	0.0087 <0.00010	0.0061 <0.00010	0.0086 <0.00010	0.00631 <0.00010	0.00797 <0.00010	0.0111 <0.00010	0.0103 <0.00010	0.0108 <0.00010
Bisumuth - Dissolved	mg/L	-	ND	ND	< 0.00010	< 0.00010	< 0.00010	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050
Boron (B)-Dissolved Cadmium (Cd)-Dissolved	mg/L mg/L	5.0 ⁽²⁾ 0.005 ⁽²⁾	ND ND	ND ND	<0.004 <0.00001	0.0241 <0.000010	<0.0050 0.000021	<0.010 0.000338	<0.010 0.0000322	<0.010 <0.000050	<0.010 <0.000050	<0.010 0.0000129
Calcium (Ca)-Dissolved	mg/L	-	- ND	- ND	21.5	<0.000010 11.9	0.000021	13.5	16.8	21.8	19.1	23.5
Cesium (Cs) - Dissolved Chromium (Cr)-Dissolved	mg/L mg/L	0.05 - 6.0 (2)	- ND	- ND	<0.0005	0.00069	<0.00050	0.00019	<0.000010 0.00035	<0.000010 0.00029	<0.000010 0.00015	<0.000010 0.00031
Cobalt (Co)-Dissolved	mg/L mg/L	0.05 - 6.0	ND ND	ND ND	<0.0005	0.00069	<0.00050	0.00019	<0.00035	<0.00029	<0.00015	0.00031
Copper (Cu)-Dissolved	mg/L	1.5 ⁽²⁾ AO	0.00093	ND	0.0079	0.00841	0.0209	0.0211	0.00366	0.00315	0.00199	0.00249
Iron (Fe)-Dissolved Lead (Pb)-Dissolved	mg/L mg/L	6.5 ⁽²⁾ 0.01 ⁽²⁾	ND ND	ND ND	0.016 0.0006	<0.010 0.00028	<0.010 0.00086	0.012 0.000922	0.014 0.000051	<0.010 0.000135	0.025 0.000065	<0.010 0.000085
Lithium (Li)-Dissolved	mg/L	0.008 (2)	ND	ND	0.0007	0.00464	0.00078	0.0017	<0.0010	<0.0010	<0.0010	<0.0010
Magnesium (Mg)-Dissolved Manganese (Mn)-Dissolved	mg/L	1.5 ⁽²⁾	0.277 0.0178	ND 0.0053	1.36 0.00569	5.52 0.00496	1.38 0.00885	4.95 0.0145	1.32 0.0316	1.33 0.00025	1.45 0.00597	1.64 0.00289
Mercury (Hg)-Dissolved	mg/L mg/L	0.001 ⁽²⁾	0.0178 ND	0.0033 ND	<0.00369	<0.00496	<0.00885	<0.0000050	<0.000050	<0.00025	0.00597	<0.00289
Molybdenum (Mo)-Dissolved	mg/L	0.25 ⁽²⁾	ND	0.000222	< 0.00010	0.00013	0.00012	0.000129	0.000251	0.000052	0.000152	0.00009
Nickel (Ni)-Dissolved Phosphorus - Dissolved	mg/L mg/L	0.08 (2)	-	-	<0.0002 <0.05	0.00174 <0.050	0.00115 <0.050	0.00120 <0.050	<0.00050 <0.050	<0.00050 <0.050	<0.00050 <0.050	<0.00050 <0.050
Potassium (K)-Dissolved	mg/L	-	-	-	0.51	0.46	-	0.563	0.505	0.524	0.53	0.553
Rubidium (Rd) - Dissolved Selenium (Se)-Dissolved	mg/L mg/L	0.01 (2)	- ND	- ND	<0.00050	<0.00050	<0.00050	0.000080	0.00028 <0.000050	0.00032 0.00008	0.00031 0.000111	0.00034 0.000101
Silicon - Dissolved	mg/L	(2)	ND	ND	5.1	4.5	5.2	4.14	4.01	5.11	4.01	4.65
Silver (Ag)-Dissolved Sodium (Na)-Dissolved	mg/L mg/L	0.02 ⁽²⁾ 200 ⁽²⁾	ND 1.43	ND 1.28	<0.00005 1.74	<0.000050 1.68	<0.000050 1.78	<0.000010 1.62	<0.000010 1.67	<0.000010 1.77	<0.000010 1.67	<0.000010 1.75
Strontium - Dissolved	mg/L	-	0.0286	0.0283	0.0803	0.0424	0.0761	0.0496	0.0705	0.0794	0.0829	0.0922
Sulfur- Dissolved Tellurium - Dissolved	mg/L mg/L	-	-	-	<3.0 <0.00020	<3.0 <0.00020	<3.0 <0.00050	<0.50 <0.00020	0.58 <0.00020	<0.50 <0.00020	<0.50 <0.00020	<0.50 <0.00020
Thallium (Tl)-Dissolved Thorium - Dissolved	mg/L mg/L	-	-	-	<0.00002 <0.00010	<0.000020 <0.00010	<0.000020 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.000010 <0.00010	<0.00010 <0.00010	<0.000010 <0.00010
Tin (Sn)-Dissolved	mg/L	2.5 (2)	ND	ND	< 0.00020	< 0.00020	<0.00020	0.00081	0.00026	< 0.00010	< 0.00010	< 0.00010
Titanium (Ti)-Dissolved Tungston (W)- Dissolved	mg/L mg/L	0.003 (2)	-	-	<0.0050	<0.0050	-	<0.00030 0.00012	<0.00030 0.00028	<0.00030 <0.00010	<0.00030 0.00066	<0.00030 0.00029
Uranium (U)-Dissolved	mg/L	0.020	ND	ND	< 0.00002	<0.000020	0.000026	-	0.000013	0.000022	0.000017	0.00023
Vanadium (V)-Dissolved Zinc (Zn)-Dissolved	mg/L mg/L	0.020 ⁽²⁾ 3.0 ⁽²⁾	ND ND	ND ND	<0.0010 0.0111	<0.0010 0.0169	<0.0010 0.0302	-	<0.00050 0.0158	0.00099 0.0073	0.00074 0.0054	0.00077 0.0053
Zirconium - Dissolved	mg/L	-	ND	ND	<0.00010	<0.00010	<0.00010	-	<0.000060	<0.00060	<0.000060	<0.00020
Volatile Organic Compounds (Water) Benzene	mg/L	0.005 (2)	_	-	_	_	_	_	_	_	_	_
Bromodichloromethane	mg/L	0.1 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
Bromoform	mg/L	0.1(2)	-	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride Chlorobenzene	mg/L mg/L	$0.002^{(2)}$ $0.08^{(2)}$	-	-	-	-	-	<u>-</u>	-	<u>-</u>	-	-
Dibromochloromethane	mg/L	0.1 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
Chloroethane Chloroform	mg/L mg/L	0.1 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
Chloromethane	mg/L	-	-	-	-	-	-	-	-	-	-	-
1,2-Dichlorobenzene 1,3-Dichlorobenzene	mg/L mg/L	0.2 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene	mg/L	0.005(2)	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane 1,2-Dichloroethane	mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	mg/L mg/L	0.005(3)	-	-	-	-	-	-	-	-	-	-
cis-1,2-Dichloroethylene	mg/L	0.008 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	mg/L	0.08 ⁽²⁾ 0.05 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
Dichloromethane 1,2-Dichloropropane	mg/L mg/L	0.0045 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene	mg/L mg/L	-	-	-	-	-	-	-	-	-	-	-
trans-1,3-Dichloropropylene 1,3-Dichloropropene (cis & trans)	mg/L mg/L	0.0015 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
Ethylbenzene	mg/L	0.14 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
Methyl t-butyl ether (MTBE) Styrene	mg/L mg/L	$0.095^{(2)}$ $0.8^{(2)}$	-	-	-	-	-	-	-	-	-	-
1,1,1,2-Tetrachloroethane	mg/L	0.8° 0.006 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane	mg/L	0.008 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
Tetrachloroethylene Toluene	mg/L mg/L	0.03 ⁽²⁾ 0.06 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	mg/L	8 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	mg/L	0.003 ⁽²⁾	-	-	-	-	-	-	-		-	-
Trichloroethylene Trichlorofluoromethane	mg/L mg/L	0.005 ⁽²⁾ 1 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
Vinyl Chloride	mg/L	0.002 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
ortho-Xylene meta- & para-Xylene	mg/L mg/L	-	-	-	-	-	-	-	-	-	-	-
Xylenes	mg/L	0.09 ⁽²⁾	-	-	-	-	-	-	-	-	-	-
					-		-					

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2, last updated January 2019
 (3) All criteria limits for BCWQG-Drinking Quality Guidelines based on Total Metal Concentration except Aluminum (Dissolved)
 (4) BC MoE Water Quality Guidelines for Protection of Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 (c) Limit for dissolved metals, not total metals
 (d) Limit dependent upon hardness.
 (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromium VI in sample
 (f) Where hardness data was unavailable, 50 mg/L was assumed
 (g) Maximum value
 (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows
- * Criteria exceeds detection limit MAC = Maximum Acceptable Concentration AO = Aesthetic Objective

Table 6: Groundwater Quality Results Sampling Location MW-15 (302210)

		BC MoE Guidelines	02-Oct-17	14-Nov-17	09-Apr-18	18-Jul-18	21-Nov-18	21-Nov-18	21-Nov-18	26-Mar-19	26-Jun-19
			V2 Ott 17	111107 17	05 Apr 10	10 041 10	Sample	Duplicate	RPD	20 11111 12	20 0411 19
Field Conductivity	Units uS/cm	CSR-DW (2)	90.3	96.2	97.6	157	157	-	-	174	164
pH	pН	-	8.39	8.29	7.8	7.51	7.9	-	-	6.5	7.67
Dissolved Oxygen Temperature	mg/L °C	-	14.2 5.5	10.5 5.0	9.8 4.9	7.1 5.3	0.3 5.1	-	-	8.7 5.1	10.4 5.8
Water elevation	m	-	-	-	44.66	43.8	45.37	-	-	44.72	45.78
Analyte Conductivity	Units uS/cm	-	152	-					-	-	
Hardness (as CaCO3)	mg/L	-	7.9	72.9	75.7 8.17	79.5	79.2	80.2	0.63%	82.5	87.4 8.22
pH Total Suspended Solids	pH mg/L	-	- 7.9	8.1	8.17				-	8.18	8.22
Total Dissolved Solids	mg/L	-	75 77	78.1	82.4	83.6	77.5	87.4	6.00%	83.4	- 85.2
Alkalinity, Total (as CaCO3) Ammonia, Total (as N)	mg/L mg/L	-	<0.03	- 78.1	0.0052	<0.0050	<0.0050	<0.0050	6.00%	<0.0050	<0.0050
Total Nitrogen as N	mg/L	-	0.0827	-	< 0.050	< 0.050	<0.050	<0.050	-	<0.050	<0.050
Bromide (Br) Chloride (Cl)	mg/L mg/L	250 (2)	<1.0	< 0.50	<0.050	<0.050	<0.050	<0.050	-	<0.050	<0.050
Fluoride (F)	mg/L	1.5 (2)	< 0.1	0.032	0.034	0.034	0.027	0.027	0.00%	0.039	0.033
Nitrate (as N)	mg/L	10 (2)	< 0.01	0.089	0.0908	0.0873	0.0941	0.0949	0.42%	0.0732	0.096
Nitrite (as N) Sulfate (SO4)	mg/L mg/L	1.0 ⁽²⁾ 500 ⁽²⁾	<0.01	<0.001	<0.0010	<0.0010 1.02	<0.0010	<0.0010	1.09%	<0.0010	<0.0010 0.95
Total Organic Carbon	mg/L	-	-	< 0.50	<0.50	< 0.50	<0.50	< 0.50	-	0.5	1.11
BOD COD	mg/L mg/L	-	-	-	<20	<20	<20	<20	-	<20	<20
Dissolved Metals	mg/L	-	-	-	<20	<20	<20	<20	-	<20	<20
Aluminum (Al)-Dissolved	mg/L	9.5 (2)	< 0.0050	0.0026	0.0023	0.0029	0.005	0.0057	6.54%	0.0031	0.0036
Antimony (Sb)-Dissolved	mg/L	0.006 ⁽²⁾	<0.00020	<0.00010	< 0.00010	<0.00010	<0.00010 0.0007	<0.00010	- 0.000/	0.00016	< 0.00010
Arsenic (As)-Dissolved Barium (Ba)-Dissolved	mg/L mg/L	0.01 ⁽²⁾ 1.0 ⁽²⁾	0.00072 0.0139	0.00082 0.0200	0.00074 0.0165	0.00078 0.0165	0.0007	0.0007 0.0176	0.00% 2.62%	0.00081 0.0183	0.00079 0.0175
Beryllium (Be)-Dissolved	mg/L	0.008 ⁽²⁾	<0.00010	< 0.00010	<0.00010	<0.00010	< 0.00010	<0.00010	-	<0.00010	< 0.00010
Bisumuth - Dissolved	mg/L	-	<0.00010	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	-	<0.000050	<0.000050
Boron (B)-Dissolved Cadmium (Cd)-Dissolved	mg/L mg/L	5.0 ⁽²⁾ 0.005 ⁽²⁾	<0.0050 <0.000010	<0.010 <0.000050	<0.010 0.0000177	<0.010 0.0000149	<0.010 0.000229	<0.010 0.000225	0.88%	<0.010 <0.000050	<0.010 0.0000712
Calcium (Ca)-Dissolved Calcium (Ca)-Dissolved	mg/L mg/L	0.005	<0.000010	-0.0000030	28.2	29.6	29.5	29.9	0.88%	30.5	32.4
Cessium (Cs) - Dissolved	mg/L	- (2)	-0.0005-	0.00000	< 0.000010	< 0.000010	< 0.000010	< 0.000010	-	< 0.000010	< 0.000010
Chromium (Cr)-Dissolved Cobalt (Co)-Dissolved	mg/L mg/L	0.05 - 6.0 ⁽²⁾ 0.001 ⁽²⁾	<0.00050 <0.00010	0.00039 <0.00010	0.00021 <0.00010	0.00035 <0.00010	0.00039 <0.00010	0.00042 <0.00010	3.70%	0.0004 <0.00010	0.00036 <0.00010
Copper (Cu)-Dissolved	mg/L	1.5 ⁽²⁾ AO	<0.00010	<0.00010	<0.00010	<0.00010	0.00010	0.00010	2.04%	<0.00010	0.00010
Iron (Fe)-Dissolved	mg/L	6.5 ⁽²⁾	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	-	< 0.010	< 0.010
Lead (Pb)-Dissolved	mg/L	0.01 ⁽²⁾	<0.00020	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	-	<0.000050	<0.000050
Lithium (Li)-Dissolved Magnesium (Mg)-Dissolved	mg/L mg/L	0.008 (2)	0.00079 1.22	0.0011	<0.0010 1.27	<0.0010	<0.0010 1.35	<0.0010	0.37%	<0.0010	<0.0010 1.54
Manganese (Mn)-Dissolved	mg/L	1.5 (2)	0.00032	0.00014	0.0001	0.00014	0.00055	0.00059	3.51%	0.00012	0.00025
Mercury (Hg)-Dissolved	mg/L	0.001 ⁽²⁾	< 0.000010	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	-	< 0.0000050	< 0.0000050
Molybdenum (Mo)-Dissolved	mg/L	0.25 ⁽²⁾	< 0.00010	< 0.000050	<0.000050	< 0.00010	< 0.000050	< 0.000050	-	< 0.000050	<0.000050
Nickel (Ni)-Dissolved Phosphorus - Dissolved	mg/L mg/L	0.08 (2)	-	-	<0.00050 <0.050	<0.00050 <0.050	<0.00050 <0.050	<0.00050 <0.050	-	<0.00050 <0.050	<0.00050 <0.050
Potassium (K)-Dissolved	mg/L	-	-	-	0.543	0.602	0.589	0.588	0.08%	0.579	0.622
Rubidium (Rd) - Dissolved Selenium (Se)-Dissolved	mg/L mg/L	0.01 (2)	<0.00050	0.000080	0.00022 0.000069	<0.00020 0.000082	0.00021 <0.000050	0.00024 <0.000050	6.67%	0.00022 0.000074	0.00024 0.00007
Silicon - Dissolved	mg/L	- 0.01	5.7	5.49	5.47	5.05	5.68	5.64	0.35%	6.1	5.86
Silver (Ag)-Dissolved	mg/L	0.02 (2)	< 0.000050	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010	-	< 0.000010	< 0.000010
Sodium (Na)-Dissolved	mg/L	200 ⁽²⁾	1.47	1.39	1.51	1.59	1.66	1.65	0.30%	1.56	1.66
Strontium - Dissolved Sulfur- Dissolved	mg/L mg/L	-	0.0799	0.0852	0.0948 <0.50	0.0894 <0.50	0.0932 <0.50	0.0925 <0.50	0.38%	0.0987 <0.50	0.103 <0.50
Tellurium - Dissolved	mg/L	-	-	-	<0.00020	<0.00020	<0.00020	<0.00020	-	<0.00020	<0.00020
Thallium (Tl)-Dissolved Thorium - Dissolved	mg/L mg/L	-	-	-	<0.000010 <0.00010	<0.000010 <0.00010	<0.000010 <0.00010	<0.00010 <0.00010	-	<0.00010 <0.00010	<0.000010 <0.00010
Tin (Sn)-Dissolved	mg/L	2.5 (2)	< 0.00020	< 0.00010	< 0.00010	< 0.00010	0.00018	0.00018	0.00%	< 0.00010	< 0.00010
Titanium (Ti)-Dissolved Tungston (W) - Dissovled	mg/L mg/L	0.003 (2)	-	-	<0.00030 <0.00010	<0.00030 <0.00010	<0.00030 <0.00010	<0.00030 <0.00010	-	<0.00030 <0.00010	<0.00030 <0.00010
Uranium (U)-Dissolved	mg/L	0.020	0.000027	0.000022	0.00010	0.00010	0.00010	0.00003	0.00%	0.000025	0.000027
Vanadium (V)-Dissolved	mg/L	0.020 (2)	< 0.0010	0.00082	0.00075	0.00077	0.00072	0.00074	1.37%	0.00083	0.00074
Zinc (Zn)-Dissolved Zirconium - Dissolved	mg/L	3.0 (2)	<0.0040 <0.00010	<0.0010 <0.00060	<0.0010 <0.00060	<0.0010 <0.00060	0.0044 <0.00060	0.005 <0.000060	6.38%	<0.0010 <0.00060	<0.0010 <0.00020
Volatile Organic Compounds (Water)	mg/L	-	<0.00010	<0.000000	<0.000000	<0.000000	<0.000000	<0.000000	-	<0.000000	<0.00020
Benzene	mg/L	0.005 (2)	-	-	-	-	-	-	-		
Bromodichloromethane	mg/L	0.1 ⁽²⁾	-	-	-	-	-	-	-		
Bromoform Carbon Tetrachloride	mg/L mg/L	0.1 ⁽²⁾ 0.002 ⁽²⁾	-	-	-	-	-	-	-		
Chlorobenzene	mg/L	0.08 ⁽²⁾	-	-	-	-	-	-	-		
Dibromochloromethane	mg/L	0.1 ⁽²⁾	-	-	-	-	-	-	-		
Chloroethane Chloroform	mg/L mg/L	- 0.1 ⁽²⁾	-	-	-	-	-	-	-		
Chloromethane	mg/L	-	-	-	-	-	-	-	-		
1,2-Dichlorobenzene	mg/L	0.2 ⁽²⁾	-	-	-	-	-	-	-		
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/L mg/L	- 0.005 ⁽²⁾	-	-	-	-	-	-	-		
1,1-Dichloroethane	mg/L	0.03 ⁽²⁾	-	-	-	-	-	-	-		
1,2-Dichloroethane	mg/L	0.005 ⁽²⁾	-	-	-	-	-	-	-		
1,1-Dichloroethylene	mg/L	0.014 ⁽²⁾	-	-	-	-	-	-	-		
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene	mg/L mg/L	$0.008^{(2)}$ $0.08^{(2)}$	-	-	-	-	-	-	-		
Dichloromethane	mg/L	0.05 ⁽²⁾		-	-	-	-	-	-		
1,2-Dichloropropane	mg/L	0.0045(2)	-	-	-	-	-	-	-		
cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene	mg/L mg/L	-	-	-	-	-	-	-	-		
1,3-Dichloropropene (cis & trans)	mg/L	0.0015 ⁽²⁾	-	-	-	-	-	-	-		
Ethylbenzene	mg/L	0.14 ⁽²⁾	-	-	-	-	-	-	-		
Methyl t-butyl ether (MTBE) Styrene	mg/L mg/L	0.095 ⁽²⁾ 0.8 ⁽²⁾	-	-	-	-	-	-	-		
1,1,1,2-Tetrachloroethane	mg/L mg/L	0.8 ⁽²⁾ 0.006 ⁽²⁾	-	-	-	-	-	-	-		
1,1,2,2-Tetrachloroethane	mg/L	0.008 ⁽²⁾		-	-	-	-	-	-		
Tetrachloroethylene	mg/L	0.03 ⁽²⁾	-	-	-	-	-	-	-		
Toluene	mg/L	0.06 ⁽²⁾	-	-	-	-	-	-	-		
1,1,1-Trichloroethane 1,1,2-Trichloroethane	mg/L mg/L	8 ⁽²⁾ 0.003 ⁽²⁾	-	-	-	-	-	-	-		
Trichloroethylene	mg/L mg/L	0.005 ⁽²⁾	-	-	-	-	-	-	-		
Trichlorofluoromethane	mg/L	1 ⁽²⁾		-	-	-					
Vinyl Chloride	mg/L	0.002 ⁽²⁾	-	-	-	-	-	-	-		
ortho-Xylene meta- & para-Xylene	mg/L mg/L	-	-	-	-	-	-	-	-		
Xylenes	mg/L	0.09 ⁽²⁾	-	-	-	-	-	-	-		
	_	No.									

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2, last updated January 2019
 (3) All criteria limits for BCWQG-Drinking Quality Guidelines based on Total Metal Concentration except Aluminum (Dissolved)
 (4) BC MoE Water Quality Guidelines for Protection of Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 (c) Limit for dissolved metals, not total metals
 (d) Limit dependent upon hardness.
 (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromium VI in sample
 (f) Where hardness data was unavailable, 50 mg/L was assumed
 (g) Maximum value
 (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows
- * Criteria exceeds detection limit MAC = Maximum Acceptable Concentration AO = Aesthetic Objective

Table 7: Groundwater Quality Results Sampling Location MW-16 (E02211)

Table 7: Groundwater Quality Results Sampling Lo	ocation MW-10			L	4435 45	I 00 1 10	10.7.140	I 44 37 40	1 2625 40	26.7.40
		BC MoE Guidelines	05-Apr-17	02-Oct-17	14-Nov-17	09-Apr-18	18-Jul-18	21-Nov-18	26-Mar-19	26-Jun-19
Field Conductivity	Units uS/cm	CSR-DW (2)	124	94.3	90.7	90.3	146	147	159	152
pH	pН	-	7.8	8.37	8.23	7.24	7.81	7.81	7.52	7.64
Dissolved Oxygen Temperature	mg/L °C	-	-	14.2 5.8	9.8 4.6	12.1 4.8	7.9 5.6	0.3 5	9.9 5	14 5.9
Water elevation	m	1	-	-	44.6	45.15	44.31	45.03	46.21	46.27
Analyte Conductivity	Units uS/cm	-	137	-	-	_	-	-	-	-
Hardness (as CaCO3)	mg/L	-	-	75	72.9	71.1	72.8	72.9	77.6	83.9
pH Total Suspended Solids	pH mg/L	-	- 8	- 8	8.08	8.13	-	-	8.16	8.21
Total Dissolved Solids	mg/L	-	81	-	-	-	-	-	-	-
Alkalinity, Total (as CaCO3) Ammonia, Total (as N)	mg/L mg/L	-	94 <0.03	80	77.8 <0.005	77.2 0.0061	77.7 <0.0050	77.5 <0.0050	78 <0.0050	<0.0050
Total Nitrogen as N	mg/L	-	-	-	-	-	-	-	-	-
Bromide (Br) Chloride (Cl)	mg/L mg/L	250 ⁽²⁾	<1.0	- <1	<0.50	<0.050 <0.50	<0.050 <0.50	<0.050 <0.50	<0.050 <0.50	<0.050 <0.50
Fluoride (F)	mg/L	1.5 (2)	<0.1	<0.1	0.036	0.039	0.039	0.038	0.036	0.036
Nitrate (as N)	mg/L	10 (2)	0.028	< 0.01	0.0793	0.0686	0.0747	0.0767	0.137	0.0757
Nitrite (as N) Sulfate (SO4)	mg/L mg/L	1.0 ⁽²⁾ 500 ⁽²⁾	<0.01	<0.01	<0.001	<0.0010	<0.0010 0.96	<0.0010 0.92	<0.0010	<0.0010
Total Organic Carbon	mg/L	- 500	-	-	<0.50	< 0.50	< 0.50	<0.50	0.68	<0.50
BOD COD	mg/L	-	-	-	<20	<20	<20	<20	<20	<20
Dissolved Metals	mg/L	-	-	-	<20	<20	<20	<20	<20	<20
Aluminum (Al)-Dissolved	mg/L	9.5 (2)	0.0106	< 0.0050	0.0054	0.0036	0.0028	0.0037	0.0181	0.0024
Antimony (Sb)-Dissolved	mg/L	0.006 ⁽²⁾	<0.00010	<0.00020	<0.00010	<0.00010	< 0.00010	<0.00010	0.00016	<0.00010
Arsenic (As)-Dissolved Barium (Ba)-Dissolved	mg/L mg/L	0.01 ⁽²⁾ 1.0 ⁽²⁾	0.00052 0.138	0.00055 0.0161	0.00063 0.01780	0.00061 0.01910	0.00057 0.01810	0.00058 0.01810	0.00066 0.01950	0.00058 0.01940
Beryllium (Be)-Dissolved	mg/L	0.008 ⁽²⁾	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Bisumuth - Dissolved	mg/L	- (2)	<0.00010	<0.00010	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Boron (B)-Dissolved Cadmium (Cd)-Dissolved	mg/L mg/L	5.0 ⁽²⁾ 0.005 ⁽²⁾	0.014 0.00003	<0.0050 0.000018	<0.010	<0.010 0.00003	<0.010 0.00001	<0.010 0.00008	<0.010 0.00017	<0.010 0.00004
Calcium (Ca)-Dissolved	mg/L	0.005	-	-	26.90000	26.30000	26.90000	27.10000	28.60000	30.70000
Cesium (Cs)- Dissolved	mg/L	0.05 (0.2)	0.0005	-0.000£0	<0.000010 0.00038	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Chromium (Cr)-Dissolved Cobalt (Co)-Dissolved	mg/L mg/L	0.05 - 6.0 ⁽²⁾ 0.001 ⁽²⁾	0.0005 0.00012	<0.00050 <0.00010	< 0.00038	0.00026 <0.00010	0.00037 <0.00010	0.00038 <0.00010	0.00055 <0.00010	0.00036 <0.00010
Copper (Cu)-Dissolved	mg/L	1.5 ⁽²⁾ AO	0.0042	<0.00040	<0.00010	<0.00010	<0.00020	<0.00020	0.00056	<0.00010
Iron (Fe)-Dissolved	mg/L	6.5 ⁽²⁾	< 0.010	< 0.010	0.01000	<0.010	< 0.010	<0.010	0.01500	< 0.010
Lead (Pb)-Dissolved Lithium (Li)-Dissolved	mg/L mg/L	0.01 ⁽²⁾ 0.008 ⁽²⁾	<0.0001 0.0007	<0.00020 0.00096	<0.000050 0.00110	<0.00050 <0.0010	<0.000050 <0.0010	<0.000050 <0.0010	<0.000050 <0.0010	<0.00050 <0.0010
Magnesium (Mg)-Dissolved	mg/L	0.008 * 7	0.992	1.37	1.40	1.29	1.38	1.27	1.51	1.53
Manganese (Mn)-Dissolved	mg/L	1.5 (2)	0.0371	0.00752	0.00651	0.00314	0.00211	0.00186	0.00240	0.00046
Mercury (Hg)-Dissolved	mg/L	0.001 ⁽²⁾ 0.25 ⁽²⁾	<0.00002 0.00027	<0.00010 <0.00010	<0.000050 0.00005	<0.0000050 0.00006	<0.0000050 <0.00010	<0.000050 0.00005	<0.0000050 0.00006	<0.0000050 0.00006
Molybdenum (Mo)-Dissolved Nickel (Ni)-Dissolved	mg/L mg/L	0.25	-		<0.00050	< 0.00006	<0.00010	<0.00050	< 0.00050	<0.00050
Phosphorus - Dissolved	mg/L	-	-	-	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Potassium (K)-Dissolved Rubidium (Rd) - Dissolved	mg/L mg/L	-	-	-	0.60800 0.00039	0.62500 0.00043	0.64400 0.00042	0.60200 0.00042	0.62100 0.00041	0.62400 0.00036
Selenium (Se)-Dissolved	mg/L	0.01 (2)	< 0.00050	< 0.00050	0.00009	0.00009	0.00007	0.00010	0.00009	0.00007
Silicon - Dissolved	mg/L	0.02 (2)	4.5 <0.00005	5.5 <0.000050	5.28000 <0.000010	5.46000 <0.000010	5.15000 <0.000010	5.29000 <0.000010	5.54000 <0.000010	5.47000 <0.000010
Silver (Ag)-Dissolved Sodium (Na)-Dissolved	mg/L mg/L	200 ⁽²⁾	1.75	1.55	1.41	1.51	1.61	1.60	1.66	1.67
Strontium - Dissolved	mg/L	-	0.0715	0.0912	0.0918	0.0953	0.0916	0.0886	0.1010	0.1110
Sulfur- Dissolved Tellurium - Dissolved	mg/L mg/L	-	-	-	<0.50 <0.00020	0.57000 <0.00020	<0.50 <0.00020	<0.50 <0.00020	<0.50 <0.00020	<0.50 <0.00020
Thallium (Tl)-Dissolved	mg/L	-	-	-	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Thorium - Dissolved Tin (Sn)-Dissolved	mg/L mg/L	2.5 (2)	0.00049	<0.00020	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010
Titanium (Ti)-Dissolved	mg/L	-	-	-	<0.00030	<0.00030	<0.00030	<0.00030	< 0.00030	<0.00030
Tungston (W)- Dissolved	mg/L	0.003 ⁽²⁾ 0.020	- 0.00005	- 0.000050	<0.00010 0.00004	< 0.00010	< 0.00010	< 0.00010	<0.00010 0.00004	< 0.00010
Uranium (U)-Dissolved Vanadium (V)-Dissolved	mg/L mg/L	0.020	0.00005 <0.0010	0.000059 <0.0010	0.00057	0.00004 0.00061	0.00004 0.00069	0.00004 0.00062	0.0004	0.00004 0.00053
Zinc (Zn)-Dissolved	mg/L	3.0 (2)	0.0157	< 0.0040	< 0.0010	0.00110	< 0.0010	< 0.0010	0.00460	< 0.0010
Zirconium - Dissolved Volatile Organic Compounds (Water)	mg/L	-	<0.00010	<0.00010	<0.000060	<0.000060	<0.000060	<0.000060	<0.000060	<0.00020
Benzene	mg/L	0.005 (2)	-	-	<0.00050	-	-	-	-	-
Bromodichloromethane	mg/L	0.1 ⁽²⁾	-	-	< 0.0010	-	-	-	-	-
Bromoform Carbon Tetrachloride	mg/L	$0.1^{(2)}$ $0.002^{(2)}$	-	-	<0.0010 <0.00050	-	-	-	-	-
Chlorobenzene	mg/L mg/L	0.002	-	-	<0.00030	-	-	-	-	-
Dibromochloromethane	mg/L	0.1 ⁽²⁾	-	-	< 0.0010	-	-	-	-	-
Chloroethane	mg/L	- (2)	-	-	<0.0010	-	-	-	-	-
Chloroform Chloromethane	mg/L mg/L	0.1 ⁽²⁾	-	-	<0.0010 <0.0050	-	-	-	-	-
1,2-Dichlorobenzene	mg/L	0.2 ⁽²⁾	-	-	< 0.00050	-	-	-	-	-
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/L mg/L	0.005 ⁽²⁾	-	-	<0.0010 <0.0010	-	-	-	-	-
1,1-Dichloroethane	mg/L	0.003(2)	-	-	<0.0010	-	-	-	-	-
1,2-Dichloroethane	mg/L	0.005 ⁽²⁾	-	-	< 0.0010	-	-	-	-	-
1,1-Dichloroethylene	mg/L	0.014 ⁽²⁾	-	-	<0.0010	-	-	-	-	-
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene	mg/L mg/L	$0.008^{(2)}$ $0.08^{(2)}$	-	-	<0.0010 <0.0010	-	-	-	-	-
Dichloromethane	mg/L	0.05 ⁽²⁾	-	-	<0.0050	-	-	-	-	-
1,2-Dichloropropane		0.0045(2)	-	-	< 0.0010	-	-	-	-	-
cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene	mg/L		-	-	<0.00050 <0.00050	-	-	-	-	-
1,3-Dichloropropene (cis & trans)	mg/L	-	-	-				-	-	-
,	_	- 0.0015 ⁽²⁾	-	-	< 0.0010	-				
Ethylbenzene	mg/L mg/L mg/L mg/L	0.0015 ⁽²⁾ 0.14 ⁽²⁾			< 0.00050	-	-	-	-	-
Ethylbenzene Methyl t-butyl ether (MTBE)	mg/L mg/L mg/L mg/L mg/L	- 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾	- - -	- - -	<0.00050 <0.00050	-	-	-	-	-
Ethylbenzene	mg/L mg/L mg/L mg/L	0.0015 ⁽²⁾ 0.14 ⁽²⁾	-	-	< 0.00050		-	-	- - -	-
Ethylbenzene Methyl t-butyl ether (MTBE) Styrene	mg/L mg/L mg/L mg/L mg/L mg/L	- 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾ 0.8 ⁽²⁾	- - -	- - -	<0.00050 <0.00050 <0.00050	- - -	- - -		-	-
Ethylbenzene Methyl t-butyl ether (MTBE) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾ 0.8 ⁽²⁾ 0.006 ⁽²⁾ 0.008 ⁽²⁾ 0.03 ⁽²⁾	-	-	<0.00050 <0.00050 <0.00050 <0.0010 <0.00020 <0.0010	-		- - -	- - - -	- - - -
Ethylbenzene Methyl t-butyl ether (MTBE) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾ 0.8 ⁽²⁾ 0.006 ⁽²⁾ 0.008 ⁽²⁾ 0.008 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾			<0.00050 <0.00050 <0.00050 <0.0010 <0.00020 <0.0010 0.00189	-	-	- - -	- - - -	
Ethylbenzene Methyl t-butyl ether (MTBE) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾ 0.8 ⁽²⁾ 0.006 ⁽²⁾ 0.008 ⁽²⁾ 0.03 ⁽²⁾	-	-	<0.00050 <0.00050 <0.00050 <0.0010 <0.00020 <0.0010	-		- - -	- - - -	- - - -
Ethylbenzene Methyl t-butyl ether (MTBE) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾ 0.8 ⁽²⁾ 0.006 ⁽²⁾ 0.008 ⁽²⁾ 0.003 ⁽²⁾ 0.006 ⁽²⁾ 8 ⁽²⁾ 0.003 ⁽²⁾ 0.003 ⁽²⁾			<0.00050 <0.00050 <0.00050 <0.00050 <0.0010 <0.00020 <0.0010 0.00189 <0.0010 <0.00050 <0.0010				-	
Ethylbenzene Methyl t-butyl ether (MTBE) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichloroethylene	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾ 0.8 ⁽²⁾ 0.006 ⁽²⁾ 0.008 ⁽²⁾ 0.003 ⁽²⁾ 0.006 ⁽²⁾ 8 ⁽²⁾ 0.003 ⁽²⁾ 0.003 ⁽²⁾ 1.20		-	<0.00050 <0.00050 <0.00050 <0.00050 <0.00010 <0.00020 <0.0010 0.00189 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010					
Ethylbenzene Methyl t-butyl ether (MTBE) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane Vinyl Chloride	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾ 0.8 ⁽²⁾ 0.006 ⁽²⁾ 0.008 ⁽²⁾ 0.008 ⁽²⁾ 0.006 ⁽²⁾ 8 ⁽²⁾ 0.005 ⁽²⁾ 1 ⁽²⁾ 0.005 ⁽²⁾ 1 ⁽²⁾ 0.002 ⁽²⁾	-	-	<0.00050 <0.00050 <0.00050 <0.00050 <0.00010 <0.00020 <0.0010 0.00189 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010 <0.00040		-	-		
Ethylbenzene Methyl t-butyl ether (MTBE) Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichloroethylene	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾ 0.8 ⁽²⁾ 0.006 ⁽²⁾ 0.008 ⁽²⁾ 0.003 ⁽²⁾ 0.006 ⁽²⁾ 8 ⁽²⁾ 0.003 ⁽²⁾ 0.003 ⁽²⁾ 1.20		-	<0.00050 <0.00050 <0.00050 <0.00050 <0.00010 <0.00020 <0.0010 0.00189 <0.0010 <0.00050 <0.0010 <0.00050 <0.0010					

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2, last updated January 2019
 (3) All criteria limits for BCWQG Drinking Quality Guidelines based on Total Metal Concentration except Aluminum (Dissolved)
 (4) BC MoE Water Quality Guidelines for Protection of Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 (c) Limit for dissolved metals, not total metals
 (d) Limit dependent upon hardness.
 (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromium VI in sample
 (f) Where hardness data was unavailable, 50 mg/L was assumed
 (g) Maximum value
 (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows
- * Criteria exceeds detection limit MAC = Maximum Acceptable Concentration AO = Aesthetic Objective

Table 8: Groundwater Quality Results Sampling Location MW-4 (E251533)

	+	BC MoE Guidelines	22-Oct-12	02-Apr-13	13-Jun-13	06-Apr-17	07-Jul-17	03-Oct-17	15-Nov-1
ield	Units	CSR-DW (2)							
Conductivity	uS/cm	- (2)	-	-	-	57	61	33.5	33.3
Н	pН	-	-	-	-	7.8	7.9	8.2	8.04
Dissolved Oxygen	mg/L	-	-	-	-	-	1.5	8.9	6.4
emperature Vater elevation	°C m	-	-	-	-	6.3	5.6	6.1	5 24.4
analyte	Units	-	-	-		-	_		24.4
Conductivity	uS/cm		47.5		-	59.5		i	
Hardness (as CaCO3)	mg/L	-	-	22.9	-	-	22.5	22.1	19.1
Alkalinity, Total (as CaCO3)	pH mg/L	-	8.5 24.3	7.4 28.7	-	8.3	8.2 34	8.1 28	7.62 27.7
Ammonia, Total (as N)	mg/L		0.06	-	-	< 0.03	0.05	0.03	0.0229
Chloride (Cl)	mg/L	250 (2)	ND	ND	_	<1.0	1.8	1.1	1.61
Fluoride (F)	mg/L	1.5 (2)	0.16	0.2	-	-	< 0.10	0.11	0.09
Nitrate (as N)	mg/L	10 (2)	ND	ND	_	< 0.01	0.071	< 0.0100	0.0139
Vitrite (as N)	mg/L	1.0 (2)	ND	ND	_	-	< 0.01	<0.01	< 0.001
Sulfate (SO4)	mg/L	500 ⁽²⁾	-	0.81	-	<1.0	<1.0	<1.0	<0.30
Total Organic Carbon	mg/L	-	-	0.75	-	-	1.41	<0.50	3.45
BOD	mg/L	-	-	=	-	-		4.4	
COD	mg/L	-	-	-	-	-	-	<20	<20
Dissolved Metals	-	(2)							
Aluminum (Al)-Dissolved	mg/L	9.5 (2)	ND	0.0055	< 0.0050	<0.0050	< 0.0050	0.0178	0.0049
Antimony (Sb)-Dissolved	mg/L	0.006 ⁽²⁾	ND	ND	< 0.00050	< 0.00010	< 0.00010	< 0.00020	0.00082
Arsenic (As)-Dissolved	mg/L	0.01(2)	ND	0.000076	-	< 0.00050	< 0.00050	< 0.00050	0.00094
Barium (Ba)-Dissolved	mg/L	1.0 ⁽²⁾	0.0060	0.0052	-	0.0375	0.0098	0.0079	0.00681
Beryllium (Be)-Dissolved	mg/L	$0.008^{(2)}$	ND	ND	-	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Bisumuth - Dissolved	mg/L	- (2)	ND	ND	-	< 0.00010	< 0.00010	< 0.00010	0.000601
Boron (B)-Dissolved	mg/L	5.0 ⁽²⁾	ND	ND	-	0.006	< 0.0050	< 0.0050	< 0.010
admium (Cd)-Dissolved	mg/L	$0.005^{(2)}$	ND	0.00002	-	< 0.00001	< 0.000010	0.000482	0.000484
alcium (Ca)-Dissolved	mg/L	-	-	-		-	7.46	6.4	6.16
Cesium (Cs) - Dissolved	mg/L	- (**	1	-	-	-	-	-	0.000042
Chromium (Cr)-Dissolved	mg/L	0.05 - 6.0 (2)	ND	ND	-	< 0.0005	<0.00050	< 0.00050	0.00021
Cobalt (Co)-Dissolved	mg/L	0.001 (2)	ND	0.0076	-	< 0.00005	< 0.00010	< 0.00010	0.00025
Copper (Cu)-Dissolved	mg/L	1.5 ⁽²⁾ AO	0.00066	ND	-	0.0077	0.00035	0.0021	0.00372
ron (Fe)-Dissolved	mg/L	6.5(2)	ND	0.0338	-	0.011	< 0.010	< 0.010	0.018
ead (Pb)-Dissolved	mg/L	0.01(2)	ND	ND	-	< 0.0001	< 0.00010	< 0.00020	0.000450
ithium (Li)-Dissolved	mg/L	0.008 (2)	ND	ND	-	0.0004	0.00072	0.00054	< 0.0010
Magnesium (Mg)-Dissolved	mg/L	-	0.729	0.68	-	0.742	0.938	0.921	0.895
Manganese (Mn)-Dissolved	mg/L	1.5 (2)	0.0963	0.348	-	0.0237	< 0.00020	0.0558	0.0674
Mercury (Hg)-Dissolved	mg/L	0.001(2)	ND	ND	-	< 0.00002	< 0.000020	< 0.000010	< 0.00000
Molybdenum (Mo)-Dissolved	mg/L	0.25(2)	ND	0.000116	-	0.00014	< 0.00010	0.00014	0.00035
lickel (Ni)-Dissolved	mg/L	0.08 (2)	-	=	-	0.0005	0.00022	0.00071	0.00122
hosphorus - Dissolved	mg/L	-	-	-	-	< 0.05	< 0.050	< 0.050	< 0.050
otassium (K)-Dissolved	mg/L	-	-	=	-	-	1.17	0.93	1.16
ubidium (Rd) - Dissolved	mg/L	-	-	-	-	-	-	-	0.00061
elenium (Se)-Dissolved	mg/L	0.01 (2)	ND	ND	-	< 0.00050	< 0.00050	< 0.00050	0.000866
ilicon - Dissolved	mg/L	-	ND	ND	-	0.9	<1.0	<1.0	0.718
Silver (Ag)-Dissolved	mg/L	0.02 (2)	ND	ND	-	< 0.00005	<0.000050	< 0.000050	0.000017
odium (Na)-Dissolved	mg/L	200 ⁽²⁾	1.81	1.52	-	2.34	2.71	2.46	3.13
trontium - Dissolved	mg/L	-	0.0484	0.0503	-	0.0502	0.0614	0.0573	0.0536
ulfur- Dissolved	mg/L	-	-	-	-	<3.0 <0.00020	<3.0	<3.0 <0.00050	< 0.50
Cellurium - Dissolved Challium (Tl)-Dissolved	mg/L mg/L	-	-	-	-	<0.00020	<0.00020 <0.000020	<0.00030	<0.00020 0.000851
Thorium - Dissolved	mg/L	_	- 1	=	-	< 0.00010	< 0.00010	< 0.00010	< 0.0001
Tin (Sn)-Dissolved	mg/L	2.5 (2)	ND	ND	-	< 0.00020	< 0.00020	< 0.00020	0.00235
itanium (Ti)-Dissolved	mg/L	-	- 1	-	-	-	< 0.0050	< 0.0050	< 0.0003
'ungston (W) - Dissolved	mg/L	0.003 (2)	-	-	-	_	-	-	< 0.00010
Jranium (U)-Dissolved	mg/L	0.020	ND	ND	-	< 0.00002	< 0.000020	-	< 0.00001
Vanadium (V)-Dissolved	mg/L	0.020 (2)	ND	ND	-	< 0.0010	< 0.0010	_	< 0.00050
Zinc (Zn)-Dissolved	mg/L	3.0 (2)	ND	ND	-	0.008	< 0.0040	-	0.0038
irconium - Dissolved	mg/L	-	ND	ND	-	< 0.00010	< 0.00010	-	< 0.00006
olatile Organic Compounds (Water)				5					
lenzene	mg/L	0.005 (2)	-		< 0.00050	-	-	-	< 0.0005
Bromodichloromethane	mg/L	0.1 ⁽²⁾	-	-	< 0.0010	-	-	-	< 0.0010
romoform	mg/L	0.1(2)	-		< 0.0010	-	-	-	< 0.0010
Carbon Tetrachloride	mg/L	0.002 ⁽²⁾	-	-	< 0.00050	-	-	-	< 0.0005
Chlorobenzene	mg/L	0.08(2)	_	-	< 0.0010	-	_	_	< 0.0010
Dibromochloromethane	mg/L	0.1 ⁽²⁾	_		< 0.0010	-	_	-	< 0.0010
Chloroethane	mg/L	-	-	-	<0.0010	-	-	-	< 0.0010
Chloroform	mg/L	0.1(2)	-		< 0.0010	_	-	-	< 0.0010
Chloromethane	mg/L	-	-		<0.0050	-	-	-	< 0.0050
2-Dichlorobenzene	mg/L	0.2 ⁽²⁾	-	-	< 0.00070	-	-	-	< 0.0005
			- 1	=	< 0.0010	_	-	-	< 0.0010
3-Dichlorobenzene	mg/L				<0.0010			_	< 0.0010
	mg/L mg/L	0.005 ⁽²⁾	-	-	<0.0010	-	-		
4-Dichlorobenzene		0.005 ⁽²⁾ 0.03 ⁽²⁾		-			-	-	< 0.0010
,3-Dichlorobenzene ,4-Dichlorobenzene ,1-Dichloroethane ,2-Dichloroethane	mg/L		-		< 0.0010	-			
4-Dichlorobenzene ,1-Dichloroethane ,2-Dichloroethane	mg/L mg/L	0.03(2)	-	-	<0.0010 <0.0010	-	-	-	< 0.0010
4-Dichlorobenzene 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene	mg/L mg/L mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾	-	-	<0.0010 <0.0010 <0.0010		-	-	<0.0010 <0.0010
4-Dichlorobenzene 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene s-1,2-Dichloroethylene	mg/L mg/L mg/L mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾ 0.014 ⁽²⁾	- - -		<0.0010 <0.0010 <0.0010 <0.0010	- - -		-	<0.0010 <0.0010 <0.0010
4-Dichlorobenzene 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene s-1,2-Dichloroethylene ans-1,2-Dichloroethylene	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	$0.03^{(2)}$ $0.005^{(2)}$ $0.014^{(2)}$ $0.008^{(2)}$ $0.08^{(2)}$	- - - -		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010			- - -	<0.0010 <0.0010 <0.0010 <0.0010
4-Dichlorobenzene 1Dichloroethane 2Dichloroethane 1Dichloroethylene s.1,2-Dichloroethylene ans-1,2-Dichloroethylene ichloromethane	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾ 0.014 ⁽²⁾ 0.008 ⁽²⁾ 0.08 ⁽²⁾ 0.05 ⁽²⁾	- - - -		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050				<0.0010 <0.0010 <0.0010 <0.0050
4-Dichlorobenzene 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene s-1,2-Dichloroethylene ans-1,2-Dichloroethylene ichloromethane 2-Dichloropopane	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	$0.03^{(2)}$ $0.005^{(2)}$ $0.014^{(2)}$ $0.008^{(2)}$ $0.08^{(2)}$			<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010	-	- - - -		<0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010
4-Dichlorobenzene 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene s-1,2-Dichloroethylene ichloromethylene ichloromethane 2-Dichloropropane s-1,3-Dichloropropylene	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	$0.03^{(2)}$ $0.005^{(2)}$ $0.014^{(2)}$ $0.008^{(2)}$ $0.08^{(2)}$ $0.05^{(2)}$ $0.045^{(2)}$	-		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010				<0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0000
4-Dichlorobenzene 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene s-1,2-Dichloroethylene ans-1,2-Dichloroethylene ichloromethane 2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾ 0.014 ⁽²⁾ 0.008 ⁽²⁾ 0.08 ⁽²⁾ 0.05 ⁽²⁾ 0.0045 ⁽²⁾	- - - - - - - - -		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0010				<0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0050 <0.00050 <0.00050
4-Dichloroebnzene 1-Dichloroethane 2-Dichloroethylene s-1,2-Dichloroethylene ans-1,2-Dichloroethylene ichloromethylene ichloromethane 2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropene (cis & trans)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾ 0.014 ⁽²⁾ 0.008 ⁽²⁾ 0.08 ⁽²⁾ 0.05 ⁽²⁾ 0.0045 ⁽²⁾ - 0.0015 ⁽²⁾	- - - - - - - -		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010				<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00050 <0.00050 <0.00050 <0.00050
4-Dichlorobenzene 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene s-1,2-Dichloroethylene ans-1,2-Dichloroethylene ichloromethane 2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropylene	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾ 0.014 ⁽²⁾ 0.008 ⁽²⁾ 0.05 ⁽²⁾ 0.005 ⁽²⁾ 0.0045 ⁽²⁾ - 0.00015 ⁽²⁾ 0.0015 ⁽²⁾	-		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0014				<0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0050 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005
4-Dichlorobenzene 1Dichloroethane 2Dichloroethane 1Dichloroethylene s-1,2-Dichloroethylene ans-1,2-Dichloroethylene ichloromethane 2Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Jichloropropylene 3-Dichloropropylene 3-Dichloropropylene (is & trans) thylbenzene lethyl t-butyl ether (MTBE)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾ 0.014 ⁽³⁾ 0.008 ⁽²⁾ 0.08 ⁽²⁾ 0.05 ⁽²⁾ 0.0045 ⁽²⁾ 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾	-		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0015 <0.0016 <0.0016 <0.0016 <0.0016				<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005
4-Dichlorobenzene 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene s-1,2-Dichloroethylene ans-1,2-Dichloroethylene ichloromethane 2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene ans-1,3-Dichloropropylene dans-1,3-Dichloropropylene sans-1,3-Dichloropropylene dans-1,3-Dichloropropylene dans-1,3-	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾ 0.014 ⁽³⁾ 0.008 ⁽²⁾ 0.08 ⁽²⁾ 0.05 ⁽²⁾ 0.0045 ⁽²⁾ 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾			<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.0015 <0.00050 <0.00050				<0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050
4-Dichlorobenzene 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene s-1,2-Dichloroethylene s-1,2-Dichloroethylene ichloromethane 2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropylene s-1,3-Dichloropropylene dichloropropylene s-1,1-Dichloropropylene 1-Dichloropropylene	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾ 0.014 ⁽²⁾ 0.008 ⁽²⁾ 0.08 ⁽²⁾ 0.05 ⁽²⁾ 0.0045 ⁽²⁾ 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾ 0.8 ⁽²⁾ 0.06 ⁽²⁾	-		<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0050 <0.0050 <0.0050 <0.00050 <0.00050				<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005
4-Dichlorobenzene 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene s-1,2-Dichloroethylene ans-1,2-Dichloroethylene ichloromethane 2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropylene tolkloropropene (cis & trans) thylbenzene tethyl t-butyl ether (MTBE) tyrene 1,1,2-Tetrachloroethane 1,2,2-Tetrachloroethane	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	$0.03^{(2)}$ $0.005^{(2)}$ $0.014^{(2)}$ $0.008^{(2)}$ $0.08^{(2)}$ $0.05^{(2)}$ $0.0045^{(2)}$ $0.0015^{(2)}$ $0.0015^{(2)}$ $0.0015^{(2)}$ $0.0015^{(2)}$ $0.0015^{(2)}$ $0.005^{(2)}$ $0.005^{(2)}$ $0.005^{(2)}$ $0.005^{(2)}$ $0.006^{(2)}$ $0.008^{(2)}$			<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.00050 <0.00050 <0.0010 <0.0010				<0.001c <0.001c <0.001c <0.001c <0.005c <0.0005c
4-Dichlorobenzene 1,1-Dichloroethane 2,2-Dichloroethane 1,2-Dichloroethylene is-1,2-Dichloroethylene is-1,2-Dichloroethylene is-1,3-Dichloropenpene is-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3,3-Dichloropropylene dichloropropylene 1,1-1,2-Tetrachloroethylene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane etrachloroethylene	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾ 0.014 ⁽²⁾ 0.008 ⁽²⁾ 0.05 ⁽²⁾ 0.0045 ⁽²⁾ 0.0045 ⁽²⁾ 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾ 0.095 ⁽²⁾ 0.006 ⁽²⁾ 0.008 ⁽²⁾ 0.008 ⁽²⁾			<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0011 <0.0014 <0.0050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010				<0.0016 <0.0016 <0.0016 <0.0016 <0.0056 <0.0005 <0.0005 <0.00016 <0.0005 <0.00016 <0.0005 <0.00016 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0002 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
4-Dichlorobenzene 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene s-1,2-Dichloroethylene s-1,2-Dichloroethylene ichloromethane 2-Dichloropropylene s-1,3-Dichloropropylene s-1,3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene thyl-Dichloropropylene 3-Dichloropropylene 1,1,3-Dichloropropylene 1-Dichloropropylene	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	$0.03^{(2)}$ $0.005^{(2)}$ $0.014^{(2)}$ $0.008^{(2)}$ $0.05^{(2)}$ $0.0045^{(2)}$ $0.0045^{(2)}$ $0.0015^{(2)}$ $0.0015^{(2)}$ $0.14^{(2)}$ $0.095^{(2)}$ $0.006^{(2)}$ $0.008^{(2)}$ $0.008^{(2)}$ $0.006^{(2)}$			<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0014 <0.0050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050				<0.0016 <0.0016 <0.0016 <0.0016 <0.0056 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002
4-Dichlorobenzene 1Dichloroethane 2Dichloroethane 1Dichloroethylene s-1,2-Dichloroethylene s-1,2-Dichloroethylene ichloromethane 2Dichloropropylene s-1,3-Dichloropropylene s-1,3-Dichloropropylene 3Dichloropropylene 3Dichloropropylene thylbenzene lethyl t-butyl ether (MTBE) tyrene 1,1,2-Tetrachloroethane t-1,2,2-Tetrachloroethane etrachloroethylene oluene 1,1-Trichloroethane	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾ 0.014 ⁽²⁾ 0.008 ⁽²⁾ 0.08 ⁽²⁾ 0.0045 ⁽²⁾ 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾ 0.006 ⁽²⁾ 0.095 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.008 ⁽²⁾ 0.006 ⁽²⁾ 8 ⁽²⁾			<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0010 <0.0014 <0.0050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010				 <0.0010 <0.0011 <0.0010 <0.0010 <0.0010 <0.0005 <0.0001 <0.0002 <0.0001 <0.0002 <0.0001 <0.0002 <0.0001 <0.0002 <0.0001 <0.0002 <0.0001 <0.0002 <0.0001
4-Dichlorobenzene 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene s-1,2-Dichloroethylene s-1,2-Dichloroethylene ichloromethane 2-Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 3-Dichloropropylene 1-Dichloropropylene 1-Dich	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾ 0.014 ⁽²⁾ 0.008 ⁽²⁾ 0.008 ⁽²⁾ 0.005 ⁽²⁾ 0.0045 ⁽²⁾ 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾ 0.095 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 8 ⁽²⁾ 0.006 ⁽²⁾ 8 ⁽²⁾ 0.003 ⁽²⁾			<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0014 <0.0050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050				 <0.0010 <0.0011 <0.0016 <0.0016 <0.0005 <0.0002
A-Dichlorobenzene 1-Dichloroethane 2-Dichloroethane 1-Dichloroethylene is-1,2-Dichloroethylene is-1,2-Dichloroethylene is-1,2-Dichloroethylene ichloromethane 2-Dichloropropane is-1,3-Dichloropropylene ans-1,3-Dichloropropylene ans-1,3-Dichloropropylene fethyl t-butyl ether (MTBE) tyrene 1,1,2-Tetrachloroethane 1,2,2-Tetrachloroethane	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾ 0.014 ⁽³⁾ 0.008 ⁽²⁾ 0.08 ⁽²⁾ 0.005 ⁽²⁾ 0.0045 ⁽²⁾ 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 8 ⁽²⁾ 0.003 ⁽²⁾ 0.005 ⁽²⁾			<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0010 <0.0014 <0.0050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010				 <0.0010 <0.0011 <0.0016 <0.0016 <0.0016 <0.0005 <0.0002 <0.0002
4-Dichlorobenzene 1Dichloroethane 2Dichloroethane 1Dichloroethylene s-1,2-Dichloroethylene s-1,2-Dichloroethylene ichloromethane 2Dichloroethylene ichloromethane 2Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3Dichloropropylene 1Dichloropropylene 3Dichloropropylene 1Dichloropropylene 1Dichloroethylene 1Dichloroet	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾ 0.014 ⁽²⁾ 0.008 ⁽²⁾ 0.08 ⁽²⁾ 0.005 ⁽²⁾ 0.0045 ⁽²⁾ 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.005 ⁽²⁾ 0.005 ⁽²⁾ 1.20			<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0014 <0.0050 <0.00050 <0.00050 <0.00050 <0.00010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0		- - - - - - - - - - - - - - - - - - -		<0.0010 <0.0010 <0.0010 <0.0010 <0.00010 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0001 <0.0001 <0.0010 <0.0010 <0.0010 <0.0010 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
4-Dichlorobenzene 1,1-Dichloroethane 2,2-Dichloroethane 1,1-Dichloroethylene is-1,2-Dichloroethylene is-1,2-Dichloroethylene is-1,2-Dichloroethylene is-1,3-Dichloropropylene is-1,3-Dichloropropylene is-1,3-Dichloropropylene is-1,3-Dichloropropylene is-1,3-Dichloropropylene is-1,3-Dichloropropylene is-1,3-Dichloropropylene is-1,3-Dichloropropylene it-loudylene it-loud	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾ 0.014 ⁽³⁾ 0.008 ⁽²⁾ 0.08 ⁽²⁾ 0.005 ⁽²⁾ 0.0045 ⁽²⁾ 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 8 ⁽²⁾ 0.003 ⁽²⁾ 0.005 ⁽²⁾			<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0050 <0.0010 <0.0014 <0.0050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010		- - - - - - - - - - - - - - - - - - -		<0.001e <0.001e <0.001e <0.001e <0.0005e <0.0001e <0.0002e <0.001e <0.0002e <0.001e <0.0006e <
4-Dichlorobenzene 1Dichloroethane 2Dichloroethane 1Dichloroethylene s-1,2-Dichloroethylene s-1,2-Dichloroethylene ichloromethane 2Dichloroethylene ichloromethane 2Dichloropropane s-1,3-Dichloropropylene ans-1,3-Dichloropropylene 3Dichloropropylene 1Dichloropropylene 3Dichloropropylene 1Dichloropropylene 1Dichloroethylene 1Dichloroet	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.03 ⁽²⁾ 0.005 ⁽²⁾ 0.014 ⁽²⁾ 0.008 ⁽²⁾ 0.08 ⁽²⁾ 0.005 ⁽²⁾ 0.0045 ⁽²⁾ 0.0015 ⁽²⁾ 0.14 ⁽²⁾ 0.095 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.006 ⁽²⁾ 0.005 ⁽²⁾ 0.005 ⁽²⁾ 1.20			<0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010				<0.0016 <0.0016 <0.0016 <0.0016 <0.0056 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002

- (1) BC MoE. Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2, last updated January 2019
 (3) All criteria limits for BCWQG Orinking Quality Guidelines based on Total Metal Concentration except Aluminum (Dissolved)
 (4) BC MoE Water Quality Guidelines for Protection of Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 (c) Limit for dissolved metals, not total metals
 (d) Limit dependent upon hardness.
 (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromium VI in sample
 (f) Where hardness data was unavailable, 50 mg/L was assumed
 (g) Maximum value
 (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows

- * Criteria exceeds detection limit MAC = Maximum Acceptable Concentration AO = Aesthetic Objective

Table 8: Groundwater Quality Results Sampling Location MW-4 (E251533)

	+	BC MoE Guidelines	11-Apr-18	18-Jul-18	20-Nov-18	27-Mar-19
Field	Units	CSR-DW (2)				
Conductivity	uS/cm	=	40.8	66	68	47.9
bH Dissolved Oxygen	pH mg/L	-	7.96 5.9	7.33 5.5	6.6 8.6	7.66 8
Temperature	°C	=	5.3	5.5	5.5	4.6
Water elevation	m Their	-	24.62	24.19	24.99	25.57
Analyte Conductivity	Units uS/cm	-				-
Hardness (as CaCO3)	mg/L	-	26.9	31.1	28.2	36
pH Alkalinity, Total (as CaCO3)	pH mg/L	-	7.65 33.2	39	32.9	7.79 37.5
Ammonia, Total (as N)	mg/L	-	0.0295	0.0266	0.0102	0.0129
Chloride (Cl)	mg/L	250 (2)	0.54	< 0.50	< 0.50	< 0.50
Fluoride (F)	mg/L	1.5 (2)	0.076	0.048	0.045	< 0.020
Nitrate (as N)	mg/L	10 (2)	0.129	0.0618	0.0466	< 0.0050
Nitrite (as N)	mg/L	1.0 (2)	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Sulfate (SO4)	mg/L	500 (2)	0.34	0.75	<0.30	< 0.30
Fotal Organic Carbon BOD	mg/L mg/L	-	0.54	1.42	4.9	5.27
COD	mg/L	-	<20	21	43	<20
Dissolved Metals		(2)				
Aluminum (Al)-Dissolved	mg/L	9.5 (2)	0.0012	0.0251	0.0036	0.0078
Antimony (Sb)-Dissolved Arsenic (As)-Dissolved	mg/L mg/L	0.006 ⁽²⁾ 0.01 ⁽²⁾	<0.00010 <0.00010	<0.00010 0.00011	<0.00010 <0.00010	<0.00010 0.0001
Barium (Ba)-Dissolved	mg/L	1.0(2)	0.00503	0.00011	0.00994	0.0001
Beryllium (Be)-Dissolved	mg/L	0.008 ⁽²⁾	<0.00010	< 0.00998	< 0.000010	<0.00010
Bisumuth - Dissolved	mg/L	-	<0.00010	<0.00010	<0.00010	0.000082
Boron (B)-Dissolved	mg/L	5.0(2)	< 0.010	< 0.010	< 0.010	< 0.010
Cadmium (Cd)-Dissolved	mg/L	$0.005^{(2)}$	< 0.0000050	0.0000125	0.0000446	0.000186
Calcium (Ca)-Dissolved	mg/L	-	9.37 <0.000010	10.9 <0.000010	9.86 <0.000010	11.7 <0.000010
Cesium (Cs) - Dissolved Chromium (Cr)-Dissolved	mg/L mg/L	0.05 - 6.0 (2)	<0.00010	<0.00010	<0.00010	<0.00010
Cobalt (Co)-Dissolved	mg/L mg/L	0.05 - 6.0	<0.00010	<0.00010	<0.00010	<0.00010
Copper (Cu)-Dissolved	mg/L	1.5 ⁽²⁾ AO	<0.00010	0.0066	0.00177	0.00114
Iron (Fe)-Dissolved	mg/L	6.5 ⁽²⁾	< 0.010	0.536	0.022	0.073
Lead (Pb)-Dissolved	mg/L	0.01(2)	<0.000050	0.000302	<0.000050	< 0.000050
Lithium (Li)-Dissolved	mg/L	0.008 (2)	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Magnesium (Mg)-Dissolved	mg/L	(2)	0.837	0.964	0.874	1.61
Manganese (Mn)-Dissolved	mg/L	1.5 (2)	0.0067	0.0152	0.0647	0.00344
Mercury (Hg)-Dissolved Molybdenum (Mo)-Dissolved	mg/L mg/L	0.001 ⁽²⁾ 0.25 ⁽²⁾	<0.0000050	<0.0000050	<0.0000050	<0.0000050
Nickel (Ni)-Dissolved	mg/L mg/L	0.25	0.000122 <0.00050	0.000136 <0.00050	0.000085 <0.00050	<0.000050 <0.00050
Phosphorus - Dissolved	mg/L	-	<0.050	<0.050	<0.050	< 0.050
Potassium (K)-Dissolved	mg/L	=	0.757	0.759	0.79	1.06
Rubidium (Rd) - Dissolved	mg/L	(2)	0.00025	0.00027	0.00023	0.00031
Selenium (Se)-Dissolved Silicon - Dissolved	mg/L mg/L	0.01 (2)	<0.000050	<0.000050 2.08	<0.000050 1.33	0.000058 3.69
Silver (Ag)-Dissolved	mg/L	0.02 (2)	<0.000010	<0.000010	<0.000010	<0.000010
Sodium (Na)-Dissolved	mg/L	200 ⁽²⁾	2.04	1.9	1.93	2.62
Strontium - Dissolved	mg/L	=	0.0591	0.0635	0.0604	0.0729
Sulfur- Dissolved	mg/L	-	<0.50	<0.50	<0.50	0.55
Tellurium - Dissolved Thallium (Tl)-Dissolved	mg/L mg/L	-	<0.00020 <0.000010	<0.00020 <0.000010	<0.00020 <0.000010	<0.00020 <0.000010
Thorium - Dissolved	mg/L	=	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Tin (Sn)-Dissolved	mg/L	2.5 (2)	< 0.00010	< 0.00010	0.0009	0.00069
Titanium (Ti)-Dissolved	mg/L	- (2)	< 0.00030	0.00056	< 0.00030	< 0.00030
Tungston (W) - Dissolved Uranium (U)-Dissolved	mg/L mg/L	0.003 ⁽²⁾ 0.020	<0.00010 <0.000010	<0.00010 0.000011	<0.00010 <0.000010	<0.00010 0.000013
Vanadium (V)-Dissolved	mg/L	0.020	<0.00050	< 0.00050	<0.00050	<0.00050
Zinc (Zn)-Dissolved	mg/L	3.0 (2)	< 0.0010	0.0058	< 0.0010	0.002
Zirconium - Dissolved	mg/L	-	< 0.000060	< 0.000060	< 0.000060	< 0.000060
Volatile Organic Compounds (Water)	-	(2)				
Benzene	mg/L	0.005 (2)	-	-	-	-
Bromodichloromethane Bromoform	mg/L mg/L	0.1 ⁽²⁾	-	-	-	-
Carbon Tetrachloride	mg/L	0.002 ⁽²⁾	-	-	-	-
Chlorobenzene	mg/L	0.002	-	-	-	-
Dibromochloromethane	mg/L	0.08 0.1 ⁽²⁾	-	-	-	-
Chloroethane	mg/L	-	-	-	-	-
Chloroform	mg/L	0.1(2)	-	-	-	-
Chloromethane 1,2-Dichlorobenzene	mg/L	0.2 ⁽²⁾	-	-	-	-
1,3-Dichlorobenzene	mg/L mg/L	- 0.2	-	-	-	-
1,4-Dichlorobenzene	mg/L	0.005 ⁽²⁾	-	-	-	-
,1-Dichloroethane	mg/L	0.03 ⁽²⁾	-	-	-	-
,2-Dichloroethane	mg/L	0.005(2)	-	-	-	-
,1-Dichloroethylene	mg/L	0.014 ⁽²⁾	-	-	-	-
cis-1,2-Dichloroethylene	mg/L	0.008 ⁽²⁾	-	-	-	-
rans-1,2-Dichloroethylene	mg/L	0.08 ⁽²⁾	-	-	-	-
Oichloromethane 1,2-Dichloropropane	mg/L mg/L	0.05 ⁽²⁾ 0.0045 ⁽²⁾	-	-	-	-
:s-1,3-Dichloropropylene	mg/L mg/L	0.0045	-	-	-	-
rans-1,3-Dichloropropylene	mg/L	=	-	-	-	-
,3-Dichloropropene (cis & trans)	mg/L	0.0015(2)	-	-	-	-
Ethylbenzene	mg/L	0.14 ⁽²⁾	-	-	-	-
Methyl t-butyl ether (MTBE)	mg/L	0.095 ⁽²⁾	-	-	-	-
Styrene	mg/L	0.8(2)	-	-	-	-
•	mg/L	0.006 ⁽²⁾	-	-	-	-
,1,1,2-Tetrachloroethane	/T	$0.008^{(2)}$	-	-	-	-
1,1,2,2-Tetrachloroethane	mg/L	0.02(2)			-	-
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene	mg/L	0.03 ⁽²⁾	-			
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Fetrachloroethylene Foluene	mg/L mg/L	0.06 ⁽²⁾	-	-	-	-
1,1,2,2-Tetrachloroethane	mg/L	0.06 ⁽²⁾ 8 ⁽²⁾			-	- - -
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Fetrachloroethylene Foluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane	mg/L mg/L mg/L	0.06 ⁽²⁾	-	-	-	-
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Fetrachloroethylene Foluene 1,1,1-Trichloroethane	mg/L mg/L mg/L mg/L	0.06 ⁽²⁾ 8 ⁽²⁾ 0.003 ⁽²⁾		-	-	-
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Fetrachloroethylene Foluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Frichloroethylene	mg/L mg/L mg/L mg/L mg/L mg/L	0.06 ⁽²⁾ 8 ⁽²⁾ 0.003 ⁽²⁾ 0.005 ⁽²⁾		- - -	- -	- - -
1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Fetrachloroethylene Foluene 1,1,2-Trichloroethane 1,1,2-Trichloroethane Frichloroethylene Frichlorofluoromethane	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	$0.06^{(2)}$ $8^{(2)}$ $0.003^{(2)}$ $0.005^{(2)}$ $1^{(2)}$		- - - -	- - - -	

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2, last updated Janua
 (3) All criteria limits for BCWQG Drinking Quality Guidelines based on Total Metal Concentrat.
 (4) BC MoE Water Quality Guidelines for Protection of Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 'C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 (c) Limit for dissolved metals, not total metals
 (d) Limit dependent upon hardness.
 (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromiu
 (f) Where hardness data was unavailable, 50 mg/L was assumed
 (g) Maximum value
 (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 1

- * Criteria exceeds detection limit

 MAC = Maximum Acceptable Concentration

 AO = Aesthetic Objective

CSR-DW BC Contaminated Sites Regulation Water

Table 9: Groundwater Quality Results Sampling Location MW-7 (E287379)

		BC MoE Guidelines	22-Oct-12	03-Apr-13	06-Apr-17	06-Jul-17	26-Jun-19
Field	Units	CSR-DW (2)	_	_	124	77	205
Conductivity oH	uS/cm pH		-	-	7.8	8.2	203
Dissolved Oxygen	mg/L		-	-	-	78.3	
Temperature	°C	-	-	-	-	5.6	9.1
Water elevation	m	-	-	-	-	-	45.26
Analyte	Units						
Conductivity	uS/cm	-	59.2	-	-		
Hardness (as CaCO3)	mg/L	-	-	67.3	53.2	40.1	
oH Alkalinity, Total (as CaCO3)	pН	-	8.5 29.6	8.6	8.1 57	8.4	
Ammonia, Total (as CaCO3)	mg/L mg/L	-	29.6 ND	38.1	<0.03	58 <0.03	
Chloride (Cl)	mg/L	250 ⁽²⁾	1.3	ND	<1.0	1.3	
Fluoride (F)	mg/L	1.5 ⁽²⁾	ND	ND	<0.10		
3 7						0.1	
Nitrate (as N)	mg/L	10 (2)	ND	ND	0.061	0.055	
Nitrite (as N)	mg/L	1.0 (2)	ND	ND	<0.01	< 0.01	
Sulfate (SO4)	mg/L	500 ⁽²⁾	-	1.68	1.4	1.4	
Total Organic Carbon	mg/L	-	-	4.89	0.68	0.79	
BOD COD	mg/L	-	-	-	-	-	
Dissolved Metals	mg/L		_	_	_	_	
Aluminum (Al)-Dissolved	mg/L	9.5 (2)	0.0183	0.0198	0.012	0.0143	
Antimony (Sb)-Dissolved	mg/L	0.006 ⁽²⁾	0.0183 ND	0.000158	<0.0010	0.00039	
Arsenic (As)-Dissolved		0.006	0.00090	0.000138	<0.00010		
1 1	mg/L	1.0(2)	0.00090	0.00060	<0.00050 0.0139	<0.00050	
Barium (Ba)-Dissolved	mg/L					0.0129	
Beryllium (Be)-Dissolved	mg/L	0.008 ⁽²⁾	ND	ND	<0.00010	<0.00010	
Bisumuth - Dissolved	mg/L	(2)	ND	ND	<0.00010	<0.00010	
Boron (B)-Dissolved	mg/L	5.0(2)	ND	ND	0.005	< 0.0050	
Cadmium (Cd)-Dissolved	mg/L	0.005 ⁽²⁾	0.000017	0.000012	0.00023	0.000011	
Calcium (Ca)-Dissolved	mg/L	-	-	-	18.8	15.2	
Cesium (Cs)- Dissolved Chromium (Cr)-Dissolved	mg/L	(2)	- ND	- ND	<0.0005		
	mg/L	0.05 - 6.0 (2)				< 0.00050	
Cobalt (Co)-Dissolved	mg/L	0.001 (2)	ND	0.0001	0.00006	< 0.00010	
Copper (Cu)-Dissolved	mg/L	1.5 ⁽²⁾ AO	0.00118	0.00049	0.0032	0.00055	
ron (Fe)-Dissolved	mg/L	6.5 ⁽²⁾	ND	0.0069	< 0.010	< 0.010	
Lead (Pb)-Dissolved	mg/L	0.01(2)	ND	ND	< 0.0001	< 0.00010	
Lithium (Li)-Dissolved	mg/L	0.008 (2)	ND	ND	0.0007	0.00085	
Magnesium (Mg)-Dissolved	mg/L	-	0.452	0.47	0.92	0.502	
Manganese (Mn)-Dissolved	mg/L	1.5 (2)	ND	0.00082	0.00323	0.00025	
Mercury (Hg)-Dissolved	mg/L	0.001(2)	ND	ND	< 0.00002	< 0.000020	
Molybdenum (Mo)-Dissolved	mg/L	0.25(2)	ND	0.00015	0.0009	0.00015	
Nickel (Ni)-Dissolved	mg/L	0.08 (2)	-	_	0.0024	< 0.00020	
Phosphorus - Dissolved	mg/L	-	-	-	< 0.05	< 0.050	
Potassium (K)-Dissolved	mg/L	-	-	-	0.66	0.57	
Rubidium (Rb) - Dissolved	mg/L	-	-	-	-	-	
Selenium (Se)-Dissolved	mg/L	0.01 (2)	ND	0.000051	< 0.00050	< 0.00050	
Silicon - Dissolved	mg/L	-	4.24	3.79	4.7	4.3	
Silver (Ag)-Dissolved	mg/L	0.02 (2)	ND	ND	< 0.00005	< 0.000050	
Sodium (Na)-Dissolved	mg/L	200(2)	1.55	1.26	1.5	1.48	
Strontium - Dissolved	mg/L	-	0.0325	0.0361	0.0668	0.0542	
Sulfur- Dissolved	mg/L	<u>-</u>	-	-	<3.0	<3.0	
Tellurium - Dissolved	mg/L	<u> </u>	-	-	<0.00020	<0.00020	
Thallium (Tl)-Dissolved Thorium - Dissolved	mg/L	-	-	-	<0.00002 <0.00010	<0.000020 <0.00010	
	mg/L	2.5 (2)	- ND	ND	<0.00010		
Fin (Sn)-Dissolved	mg/L	2.3 (-)	ND -	ND	<0.0020	<0.00020 <0.0050	
Γitanium (Ti)-Dissolved Γungston (W) - Dissolved	mg/L	0.003 (2)		-	<0.0050		
Jranium (U)-Dissolved	mg/L mg/L	0.003	- ND	0.00002	0.00004	0.000023	
Vanadium (V)-Dissolved			ND ND	0.00002	< 0.0010		
	mg/L	0.020 (2)				<0.0010	
Zinc (Zn)-Dissolved	mg/L	3.0 (2)	ND	0.0019	0.0126	<0.0040	
Zirconium - Dissolved	mg/L	-	ND	ND	< 0.00010	< 0.00010	

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2, last updated January 2019
 (3) All criteria limits for BCWQG Drinking Quality Guidelines based on Total Metal Concentration except Aluminum (Dissolved)
 (4) BC MoE Water Quality Guidelines for Protection of Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 (c) Limit for dissolved metals, not total metals
 (d) Limit dependent upon hardness.
 (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromium VI in sample
 (f) Where hardness data was unavailable, 50 mg/L was assumed
 (g) Maximum value
 (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows
- * Criteria exceeds detection limit

 MAC = Maximum Acceptable Concentration

 AO = Aesthetic Objective

Table 10: Groundwater Quality Results Sampling Location MW-8 (E287380)

	1	DC M-F Cold-lines	22-Oct-12	02 Apr 12	13-Jun-13	06-Jul-17	03-Oct-17	15-Nov-17	10 Apr 19	18-Jul-18	21-Nov-18	25-Mar-19
		BC MoE Guidelines	22-Oct-12	03-Apr-13	13-Jun-13	96-Jul-1/	03-Oct-1/	15-N0V-1/	10-Apr-18	18-Jul-18	21-Nov-18	25-Mar-19
Field Conductivity	Units uS/cm	CSR-DW (2)	-	-	-	34	22.4	22.6	22.4	34	34	36
рН	pH	-	-	-	-	8.2	6.45	6.43	5.98	6.49	7.49	7.13
Dissolved Oxygen Temperature	mg/L °C	-	-	-	-	6.6 6.5	5.9	9.6 5.5	11.6 5.8	8.1 6.3	0.3 6.1	6.3
Water elevation	m	-	-	-	-	-	-	0.0	10.31	9.95	10.94	11.58
Analyte Conductivity	Units uS/cm	-	27.5	-	-	-	24.8	-	-	-	-	-
Hardness (as CaCO3)	mg/L	-	-	14.1	-	10.6	=	12	11.4	12.5	12.2	12.9
pH Total Suspended Solids	pH mg/L	-	6.5	6.3	-	6.1	6.2 190	6.94	7.37	-	-	6.67
Total Dissolved Solids Alkalinity, Total (as CaCO3)	mg/L mg/L		13 16	16.5	-	- 16	12	16.3	16.9	17.8	15.1	17.5
Ammonia, Total (as N)	mg/L	-	ND	-	-	< 0.03	< 0.03	< 0.005	0.0056	0.0089	<0.0050	0.0266
Total Nitrogen as N Bromide (Br)	mg/L mg/L	-	0.311	-	-	-	0.168	-	<0.050	<0.050	<0.050 <0.50	<0.050
Chloride (Cl)	mg/L	250 ⁽²⁾	ND	ND	-	2.7	2.2	1.13	1.13	1.4	1.4	<0.50
Fluoride (F)	mg/L	1.5 (2)	ND	ND	-	< 0.10	-	0.024	0.023	0.022	0.021	0.027
Nitrate (as N) Nitrite (as N)	mg/L mg/L	10 ⁽²⁾	ND ND	ND ND	-	0.17 <0.01	< 0.100	0.016 <0.001	0.0153 <0.0010	0.0233 <0.0010	0.0225 <0.0010	0.235 <0.0010
Sulfate (SO4)	mg/L	500 ⁽²⁾	-	1.31	-	<1.0	<1.0	<0.001	<0.0010	<0.0010	<0.0010	1.08
Total Organic Carbon	mg/L	-	-	2.67	-	< 0.50	-	< 0.50	0.6	3.31	1.28	3.06
BOD COD	mg/L mg/L	-	-	-	-	-	-	<20	<20	25	<20	<20
Dissolved Metals		(2)	N.D.	0.0022	.0.0050	0.0050		0.0024				
Aluminum (Al)-Dissolved Antimony (Sb)-Dissolved	mg/L mg/L	9.5 ⁽²⁾ 0.006 ⁽²⁾	ND ND	0.0033 ND	<0.0050 <0.00050	<0.0050 0.00018	0.0067 <0.00020	0.0024 <0.00010	0.0036 <0.00010	0.0144 <0.00010	0.004 <0.00010	0.0073 <0.00010
Arsenic (As)-Dissolved	mg/L	0.000 0.01 ⁽²⁾	0.00019	0.000172	-	< 0.00050	<0.00020	0.00010	<0.00010	0.00010	0.00010	0.00016
Barium (Ba)-Dissolved	mg/L	1.0 ⁽²⁾	0.0044	0.00416	-	0.0051	< 0.0050	0.0103	0.00516	0.00549	0.00508	0.00633
Beryllium (Be)-Dissolved Bisumuth - Dissolved	mg/L mg/L	0.008 ⁽²⁾	ND ND	ND ND	-	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050
Boron (B)-Dissolved	mg/L mg/L	5.0(2)	ND ND	ND ND	-	<0.0050	0.0063	<0.000	<0.000	<0.000	<0.000030	< 0.010
Cadmium (Cd)-Dissolved	mg/L	$0.005^{(2)}$	0.000011	0.000012	-	0.000213	0.000029	0.0000439	0.000186	0.000123	0.0000829	0.000282
Calcium (Ca)-Dissolved Cessium (Cs) -Dissolved	mg/L mg/L	-	-	-	-	3.15	-	4.09	3.98 <0.000010	4.33 <0.000010	4.28 <0.000010	4.4 <0.000010
Chromium (Cr)-Dissolved	mg/L	0.05 - 6.0 (2)	ND	ND	-	< 0.00050	<0.00050	0.00021	0.00025	0.00021	0.00018	0.00021
Cobalt (Co)-Dissolved	mg/L	0.001 (2)	ND	0.000011	-	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Copper (Cu)-Dissolved Iron (Fe)-Dissolved	mg/L mg/L	1.5 ⁽²⁾ AO 6.5 ⁽²⁾	0.00058 ND	ND ND	-	0.00194 <0.010	<0.00040 <0.010	<0.00020 <0.010	0.00097 <0.010	0.00037 0.016	<0.00020 <0.010	0.00114 <0.010
Lead (Pb)-Dissolved	mg/L	0.01 ⁽²⁾	ND	ND	-	< 0.00010	<0.0020	<0.000050	<0.00050	<0.000050	<0.00050	<0.00050
Lithium (Li)-Dissolved	mg/L	0.008 (2)	ND	ND	-	0.00025	0.00018	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Magnesium (Mg)-Dissolved Manganese (Mn)-Dissolved	mg/L mg/L	1.5 (2)	0.416 ND	0.37	-	0.27 <0.00020	0.363 0.0011	0.445 0.00117	0.366 0.00204	0.407 0.0101	0.377 0.00233	0.463 0.00342
Mercury (Hg)-Dissolved	mg/L	0.001 ⁽²⁾	ND	ND	-	<0.00020	<0.00011	<0.000117	<0.00204	<0.000050	<0.00233	<0.0000050
Molybdenum (Mo)-Dissolved	mg/L	0.25(2)	ND	0.000054	-	< 0.00010	0.00022	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050
Nickel (Ni)-Dissolved Phosphorus - Dissolved	mg/L mg/L	0.08 (2)	-	-	-	0.00049 <0.050	<0.00040 <0.050	<0.00050 <0.050	0.0005 <0.050	<0.00050 <0.050	0.00052 <0.050	<0.00050 <0.050
Potassium (K)-Dissolved	mg/L	-	-	-	-	0.48	-	0.254	0.316	0.335	0.274	0.314
Rubidium (Rb) - Dissolved Selenium (Se)-Dissolved	mg/L mg/L	0.01 (2)	- ND	0.000059	-	<0.00050	<0.00050	<0.000050	0.00045 <0.000050	0.00043	0.00035	0.00045 <0.000050
Silicon - Dissolved	mg/L	- 0.01	5.93	5.44	-	5.9	<0.00050	6.27	<0.000050 6.09	<0.000050 5.91	<0.000050 6.32	6.59
Silver (Ag)-Dissolved	mg/L	0.02 (2)	ND	ND	-	< 0.000050	< 0.000050	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Sodium (Na)-Dissolved Strontium - Dissolved	mg/L mg/L	200 ⁽²⁾	1.68 0.0368	1.58 0.0423	-	3.07 0.0425	2.19 0.0472	2.33 0.0516	2.39 0.0525	2.44 0.047	2.4 0.0513	2.16 0.0453
Sulfur- Dissolved	mg/L	-	-	-	-	<3.0	<3.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Tellurium - Dissolved Thallium (Tl)-Dissolved	mg/L mg/L	-	-	-	-	<0.00020 <0.000020	<0.00050 <0.000020	<0.00020 <0.000010	<0.00020 <0.000010	<0.00020 <0.000010	<0.00020 <0.000010	<0.00020 <0.000010
Thorium- Dissolved	mg/L	-	-	-	-	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Tin (Sn)-Dissolved Titanium (Ti)-Dissolved	mg/L mg/L	2.5 (2)	ND -	ND -	-	<0.00020 <0.0050	<0.00020	<0.00010 <0.00030	0.00065 <0.00030	<0.00010 0.00066	<0.00010 <0.00030	<0.00010 <0.00030
Tungston (W) - Dissolved	mg/L	0.003 (2)	-	-	-	-	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Uranium (U)-Dissolved	mg/L	0.020	ND ND	ND ND	-	<0.000020 <0.0010	<0.000020	-	<0.000010	<0.000010	<0.000010	<0.000010
Vanadium (V)-Dissolved Zinc (Zn)-Dissolved	mg/L mg/L	0.020 ⁽²⁾ 3.0 ⁽²⁾	ND ND	0.0014	-	0.0010	<0.0010 <0.0040	-	<0.00050 0.0041	<0.00050 <0.0010	<0.00050 <0.0010	<0.00050 0.0033
Zirconium - Dissolved	mg/L	-	ND	ND	-	< 0.00010	< 0.00010	-	<0.000060	<0.000060	<0.000060	<0.000060
Volatile Organic Compounds (Water) Benzene	mg/L	0.005 (2)	_	-	< 0.00050	_	-	_	_	_	_	
Bromodichloromethane	mg/L	0.1 ⁽²⁾	-	-	< 0.0010	-	-	-	-	-	-	
Bromoform	mg/L	0.1(2)	-	-	< 0.0010	-	-	-	-	-	-	
Carbon Tetrachloride Chlorobenzene	mg/L mg/L	$0.002^{(2)}$ $0.08^{(2)}$	-	-	<0.00050 <0.0010	-	-	-	-	-	-	
Dibromochloromethane	mg/L	0.08° 0.1 ⁽²⁾	-	-	<0.0010	-	-	-	-	-	-	
Chloroethane	mg/L	-	-	-	< 0.0010	-	-	-	-	-	-	
Chloroform Chloromethane	mg/L mg/L	0.1 ⁽²⁾	-	-	<0.0010 <0.0050	-	-	-	-	-	-	
1,2-Dichlorobenzene	mg/L	0.2 ⁽²⁾	-	-	< 0.00070	-	-	-	-	-	-	
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/L mg/L	- 0.005 ⁽²⁾	-	-	<0.0010 <0.0010	-	-	-	-	-	-	
1,1-Dichloroethane	mg/L mg/L	0.005(2)	-	-	<0.0010	-	-	-	-	-	-	
1,2-Dichloroethane	mg/L	0.005 ⁽²⁾	-	-	<0.0010	-	-	-	-	-	-	
1,1-Dichloroethylene	mg/L	0.014 ⁽²⁾	-	-	<0.0010	-	-	-	-	-	-	
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene	mg/L mg/L	$0.008^{(2)}$ $0.08^{(2)}$	-	-	<0.0010 <0.0010	-	-	-	-	-	-	
Dichloromethane	mg/L mg/L	0.05 ⁽²⁾	-	-	<0.0010	-	-	-	-	-	-	
1,2-Dichloropropane	mg/L	0.0045 ⁽²⁾	-	-	< 0.0010	-	-	-	-	-	-	
cis-1,3-Dichloropropylene trans-1,3-Dichloropropylene	mg/L mg/L	-	-	-	<0.0010 <0.0010	-	-	-	-	-	-	
1,3-Dichloropropene (cis & trans)	mg/L	0.0015 ⁽²⁾	-	-	<0.0014	-	-	-	-	-	-	
Ethylbenzene Methyld haved other (MTDE)	mg/L	0.14 ⁽²⁾	-	-	<0.0050	-	-	-	-	-	-	
Methyl t-butyl ether (MTBE) Styrene	mg/L mg/L	0.095 ⁽²⁾ 0.8 ⁽²⁾	-	-	<0.00050 <0.00050	-	-	-	-	-	-	
1,1,1,2-Tetrachloroethane	mg/L	0.8° 0.006 ⁽²⁾	-	-	<0.0010	-	-	-	-	-	-	
1,1,2,2-Tetrachloroethane	mg/L	0.008 ⁽²⁾	-	-	< 0.0010	-	-	-	-	-	-	
Tetrachloroethylene Toluene	mg/L	0.03 ⁽²⁾	-	-	<0.0010	-	-	-	-	-	-	
1,1,1-Trichloroethane	mg/L mg/L	0.06 ⁽²⁾ 8 ⁽²⁾	-	-	<0.00050 <0.0010	-	-	-	-	-	-	
1,1,2-Trichloroethane	mg/L	0.003 ⁽²⁾	-	-	<0.0010	-	-	-	-	-	-	
Trichloroethylene	mg/L	0.005 ⁽²⁾	-	-	< 0.0010	-	-	-	-	-	-	
Trichlorofluoromethane Vinyl Chloride	mg/L mg/L	1 ⁽²⁾ 0.002 ⁽²⁾	-	-	<0.0010 <0.0010	-	-	-	-	-	-	
ortho-Xylene	mg/L	0.002	-	-	< 0.00050	-	-	-	-	-	-	
meta- & para-Xylene	mg/L	- 0.00(2)	-	-	<0.00050	-	-	-	-	-	-	
Xylenes	mg/L	$0.09^{(2)}$	-	-	< 0.00075	-	-	-	-	-	-	

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2, last updated January 2019
 (3) All criteria limits for BCWQG-Drinking Quality Guidelines based on Total Metal Concentration except Aluminum (Dissolved)
 (4) BC MoE Water Quality Guidelines for Protection of Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 (c) Limit for dissolved metals, not total metals
 (d) Limit dependent upon hardness.
 (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromium VI in sample
 (f) Where hardness data was unavailable, 50 mg/L was assumed
 (g) Maximum value
 (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows
- * Criteria exceeds detection limit MAC = Maximum Acceptable Concentration AO = Aesthetic Objective

Table 10: Groundwater Quality Results Sampling Location MW-8 (E287380)

		BC MoE Guidelines	26-Jun-19
ield	Units	CSR-DW (2)	
Conductivity H	uS/cm pH	-	7.02
Dissolved Oxygen	mg/L	-	11.9
emperature Vater elevation	°C m	-	6.4 11.42
Analyte	Units		
Conductivity Hardness (as CaCO3)	uS/cm mg/L	-	12.3
Н	pН	-	7.34
Fotal Suspended Solids Fotal Dissolved Solids	mg/L mg/L	-	-
Alkalinity, Total (as CaCO3)	mg/L	-	16.5
Ammonia, Total (as N) Fotal Nitrogen as N	mg/L mg/L	-	<0.0050
Bromide (Br)	mg/L	- (2)	< 0.050
Chloride (Cl) Fluoride (F)	mg/L mg/L	250 ⁽²⁾ 1.5 ⁽²⁾	0.92
Nitrate (as N)	mg/L	10 (2)	0.026
Nitrite (as N)	mg/L	1.0 (2)	< 0.0010
Sulfate (SO4)	mg/L	500 ⁽²⁾	0.37
Total Organic Carbon BOD	mg/L mg/L	-	0.8
COD	mg/L	-	<20
Dissolved Metals Aluminum (Al)-Dissolved	mg/L	9.5 (2)	0.0065
Antimony (Sb)-Dissolved	mg/L	0.006 ⁽²⁾	< 0.00010
Arsenic (As)-Dissolved	mg/L	0.01(2)	0.00011
Barium (Ba)-Dissolved	mg/L	1.0(2)	0.00624
Beryllium (Be)-Dissolved Bisumuth - Dissolved	mg/L mg/L	0.008 ⁽²⁾	<0.00010
Boron (B)-Dissolved	mg/L	5.0 ⁽²⁾	< 0.010
Cadmium (Cd)-Dissolved	mg/L	0.005 ⁽²⁾	0.0002
Calcium (Ca)-Dissolved Cessium (Cs) -Dissolved	mg/L mg/L	-	4.26 <0.000010
Chromium (Cr)-Dissolved	mg/L	0.05 - 6.0 (2)	0.00023
Cobalt (Co)-Dissolved	mg/L	0.001 (2)	< 0.00010
Copper (Cu)-Dissolved fron (Fe)-Dissolved	mg/L	1.5 ⁽²⁾ AO 6.5 ⁽²⁾	0.00077
ron (Fe)-Dissolved Lead (Pb)-Dissolved	mg/L mg/L	6.5 ⁽²⁾ 0.01 ⁽²⁾	<0.010
Lithium (Li)-Dissolved	mg/L	0.008 (2)	< 0.0010
Magnesium (Mg)-Dissolved	mg/L	-	0.407
Manganese (Mn)-Dissolved	mg/L	1.5 ⁽²⁾ 0.001 ⁽²⁾	0.00218
Mercury (Hg)-Dissolved Molybdenum (Mo)-Dissolved	mg/L mg/L	0.001 ⁽²⁾	<0.000050
Nickel (Ni)-Dissolved	mg/L	0.08 (2)	< 0.00050
Phosphorus - Dissolved	mg/L	-	< 0.050
Potassium (K)-Dissolved Rubidium (Rb) - Dissolved	mg/L mg/L	-	0.308
Selenium (Se)-Dissolved	mg/L	0.01 (2)	< 0.000050
Silicon - Dissolved	mg/L	0.02 (2)	6.19
Silver (Ag)-Dissolved Sodium (Na)-Dissolved	mg/L mg/L	200 ⁽²⁾	<0.000010
Strontium - Dissolved	mg/L	-	0.0529
Sulfur- Dissolved Fellurium - Dissolved	mg/L mg/L	-	<0.50 <0.00020
Thallium (Tl)-Dissolved	mg/L	-	< 0.000010
Γhorium- Dissolved Γin (Sn)-Dissolved	mg/L mg/L	2.5 (2)	<0.00010
Γitanium (Ti)-Dissolved	mg/L	- 2.5	<0.00010
Γungston (W) - Dissolved	mg/L	0.003 (2)	< 0.00010
Uranium (U)-Dissolved Vanadium (V)-Dissolved	mg/L mg/L	0.020 0.020 ⁽²⁾	<0.000010
Zinc (Zn)-Dissolved	mg/L	3.0 (2)	0.0059
Zirconium - Dissolved	mg/L	-	< 0.00020
Volatile Organic Compounds (Water) Benzene	mg/L	0.005 (2)	
Bromodichloromethane	mg/L	0.1(2)	
Bromoform	mg/L	0.1(2)	
Carbon Tetrachloride	mg/L	0.002 ⁽²⁾	
Chlorobenzene	mg/L	0.08 ⁽²⁾ 0.1 ⁽²⁾	
Dibromochloromethane Chloroethane	mg/L mg/L	-	
Chloroform	mg/L	0.1 ⁽²⁾	_
Chloromethane ,2-Dichlorobenzene	mg/L	0.2 ⁽²⁾	
,3-Dichlorobenzene	mg/L mg/L	- 0.2` ′	
,4-Dichlorobenzene	mg/L	0.005 ⁽²⁾	
,l-Dichloroethane	mg/L	0.03 ⁽²⁾	
,2-Dichloroethane	mg/L	0.005 ⁽²⁾ 0.014 ⁽²⁾	
i,1-Dichloroethylene	mg/L mg/L	0.014 ⁽²⁾ 0.008 ⁽²⁾	
rans-1,2-Dichloroethylene	mg/L	0.08 ⁽²⁾	
Dichloromethane	mg/L	0.05 ⁽²⁾	
,2-Dichloropropane sis-1,3-Dichloropropylene	mg/L mg/L	0.0045 ⁽²⁾	
rans-1,3-Dichloropropylene	mg/L mg/L	-	
,3-Dichloropropene (cis & trans)	mg/L	0.0015 ⁽²⁾	
Ethylbenzene Activit : hutril other (MTDE)	mg/L	0.14 ⁽²⁾	
Methyl t-butyl ether (MTBE) Styrene	mg/L mg/L	0.095 ⁽²⁾ 0.8 ⁽²⁾	
1,1,1,2-Tetrachloroethane	mg/L mg/L	0.8(2)	
1,1,2,2-Tetrachloroethane	mg/L	0.008 ⁽²⁾	
[etrachloroethylene	mg/L	0.03 ⁽²⁾	
Toluene	mg/L	0.06 ⁽²⁾	
1,1,1-Trichloroethane	mg/L mg/L	8 ⁽²⁾ 0.003 ⁽²⁾	
Frichloroethylene	mg/L	0.005 ⁽²⁾	
Frichlorofluoromethane	mg/L	1 ⁽²⁾	
Vinyl Chloride	mg/L	$0.002^{(2)}$	·
ortho-Xylene neta- & para-Xylene	mg/L mg/L	-	
oc para-regionic	mg/L	0.09 ⁽²⁾	

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2, last updated Janua
 (3) All criteria limits for BCWQG Drinking Quality Guidelines based on Total Metal Concentrat.
 (4) BC MoE Water Quality Guidelines for Protection of Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 (c) Limit for dissolved metals, not total metals
 (d) Limit dependent upon hardness.
 (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromiu
 (f) Where hardness data was unavailable, 50 mg/L was assumed
 (g) Maximum value
 (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 1

- * Criteria exceeds detection limit MAC = Maximum Acceptable Concentration AO = Aesthetic Objective

CSR-DW BC Contaminated Sites Regulation Water

Table 11: Groundwater Quality Results Sampling Location MW-9 (E287381)

Table 11: Groundwater Quality Results Sampling 1	I		22-Oct-12	02-Apr-13	06-Jul-17	15-Nov-17	19-Jul-18	20-Nov-18	25-Mar-19	26-Jun-19
		BC MoE Guidelines	22-Oct-12	02-Apr-13	00-Jul-17	15-N0V-17	19-341-18	20-N0V-18	25-маг-19	20-Jun-19
Field Conductivity	Units uS/cm	CSR-DW (2)	-	-	43	24.7	28.8	42	43	87
pH Dissolved Oxygen	pH mg/L	-	-	-	7.7 8.0	7.4 9.0	5.99 6.9	6.83 3.1	7.05 11.6	7.95 12.8
Temperature	°C	-	-	-	6.0	4.8	5.5	5.4	5.5	6
Water elevation Analyte	m Units	-	-	-		50.41	50.58	51.15	51.86	51.83
Conductivity Hardness (as CaCO3)	uS/cm	-	63.7	20.4	42 14.6	- 13	- 16	16.9	15.2	15.2
pH	mg/L pH	-	6.7	6.9	6.6	7.08	-	-	7.01	7.39
Total Suspended Solids Total Dissolved Solids	mg/L mg/L	-	30	-	22	-	-	-	-	-
Alkalinity, Total (as CaCO3)	mg/L	-	30.6 ND	24.5	20 <0.03	16.4	25.4 0.0162	20.9 <0.0050	17.2 0.0205	17.8 <0.0050
Ammonia, Total (as N) Total Nitrogen as N	mg/L mg/L	-	0.213	-	0.149	-	0.0162	-	-	-
Bromide (Br) Chloride (Cl)	mg/L mg/L	250 ⁽²⁾	- ND	2.4	<1.0	0.5	<0.50	<0.050 <0.50	<0.050 <0.50	<0.050 0.63
Fluoride (F)	mg/L	1.5 (2)	ND	ND	<0.10	0.031	0.032	0.026	0.06	0.034
Nitrate (as N)	mg/L	10 (2)	0.022	0.039	0.046	0.0343	0.0205	0.0215	0.0169	0.0228
Nitrite (as N) Sulfate (SO4)	mg/L mg/L	1.0 ⁽²⁾ 500 ⁽²⁾	ND -	ND 1.83	<0.01	<0.001	<0.0010	<0.0010	<0.0010	<0.0010
Total Organic Carbon	mg/L	-	-	2.67	<0.50	3.06	8.36	2.14	7.25	1.37
BOD COD	mg/L mg/L	-	-	-	-	<20	45	<20	23	<20
Dissolved Metals										
Aluminum (Al)-Dissolved Antimony (Sb)-Dissolved	mg/L mg/L	9.5 ⁽²⁾ 0.006 ⁽²⁾	ND ND	0.0033 0.000137	<0.0050 0.00014	0.0037 <0.00010	0.0427 0.00011	0.0069 0.00013	0.0188 <0.00010	0.0034 <0.00010
Arsenic (As)-Dissolved	mg/L	0.01 ⁽²⁾	0.00023	0.000137	<0.00014	0.00022	0.00011	0.00013	0.00062	0.00016
Barium (Ba)-Dissolved	mg/L	1.0 ⁽²⁾	0.0074	0.00512	< 0.0050	0.0149	0.00818	0.00573	0.0245	0.00489
Beryllium (Be)-Dissolved Bisumuth - Dissolved	mg/L mg/L	0.008 ⁽²⁾	ND ND	ND ND	<0.00010 <0.00010	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050
Boron (B)-Dissolved	mg/L mg/L	5.0 ⁽²⁾	ND ND	ND ND	<0.00010	<0.00030	<0.00030	<0.00030	<0.000	<0.00030
Cadmium (Cd)-Dissolved	mg/L	0.005(2)	0.000065	0.00015	0.000022	0.0003550	0.000178	0.000771	0.000155	0.0000555
Calcium (Ca)-Dissolved Cessium (Cs) -Dissolved	mg/L mg/L	-	-	-	5.04	4.34 <0.000010	5.35 0.000012	5.7 <0.000010	5.1 <0.000010	5.14 <0.000010
Chromium (Cr)-Dissolved	mg/L	0.05 - 6.0 (2)	ND	0.000029	<0.00050	0.00021	0.0002	0.00019	0.00017	0.00012
Cobalt (Co)-Dissolved Copper (Cu)-Dissolved	mg/L mg/L	0.001 ⁽²⁾ 1.5 ⁽²⁾ AO	ND 0.00086	0.00047 ND	<0.00010 0.00025	<0.00010 0.00064	0.00075 0.00081	0.00015 0.00202	0.00023 0.00282	<0.00010 0.0006
Iron (Fe)-Dissolved	mg/L	6.5(2)	0.00080 ND	ND ND	< 0.010	< 0.010	0.312	0.00202	0.00282	< 0.010
Lead (Pb)-Dissolved	mg/L	0.01(2)	ND	ND	<0.00010	<0.000050	0.00012	<0.000050	0.000157	<0.000050
Lithium (Li)-Dissolved Magnesium (Mg)-Dissolved	mg/L mg/L	0.008 (2)	ND 0.924	ND 0.55	0.00051	<0.0010 0.532	<0.0010 0.651	<0.0010 0.652	<0.0010 0.605	<0.0010 0.583
Manganese (Mn)-Dissolved	mg/L	1.5 (2)	0.0048	0.0038	<0.00020	0.01530	0.234	0.0258	0.0565	0.00028
Mercury (Hg)-Dissolved	mg/L	0.001 ⁽²⁾	ND	ND a coccac	<0.000020	<0.0000050	<0.000050	<0.0000050	<0.0000050	<0.0000050
Molybdenum (Mo)-Dissolved Nickel (Ni)-Dissolved	mg/L mg/L	0.25 ⁽²⁾ 0.08 ⁽²⁾	ND -	0.000096	<0.00010 0.00046	0.000084 <0.00050	0.000156 0.00056	0.000057 <0.00050	0.000093 <0.00050	0.000061 <0.00050
Phosphorus (P)- Dissovled	mg/L	ī	-	-	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Potassium (K)-Dissolved Rubidium (Rb) -Dissolved	mg/L mg/L	-	-	-	0.33	0.285 <0.00020	0.323 0.00032	0.371 0.00025	0.364 0.00033	0.334 <0.00020
Selenium (Se)-Dissolved	mg/L	0.01 (2)	ND	0.000053	< 0.00050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Silicon - Dissolved Silver (Ag)-Dissolved	mg/L mg/L	0.02 (2)	4.10 ND	4.74 ND	6.00 <0.000050	5.89 <0.000010	5.94 <0.000010	5.98 <0.000010	6.12 <0.000010	5.79 <0.000010
Sodium (Na)-Dissolved	mg/L	200 ⁽²⁾	2.21	1.95	1.76	1.670	1.77	1.84	1.52	1.67
Strontium - Dissolved Sulfur- Dissolved	mg/L mg/L	-	0.0480	0.0328	0.0244 <3.0	0.0235 <0.50	0.0303 <0.50	0.0335 <0.50	0.0328 <0.50	0.0351 <0.50
Tellium (Te) - Dissolved	mg/L	-	-	-	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Thallium (Tl)-Dissolved Thorium (Th)- Dissolved	mg/L mg/L	-	-	-	<0.000020 <0.00010	<0.000010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.000010 <0.00010
Tin (Sn)-Dissolved	mg/L	2.5 (2)	ND	ND	< 0.00020	< 0.00010	< 0.00010	0.00091	< 0.00010	< 0.00010
Titanium (Ti)-Dissolved Tungston (W) - Dissolved	mg/L mg/L	0.003 (2)	-	-	<0.0050	<0.00030 <0.00010	0.00305 <0.00010	<0.00030 <0.00010	0.00061 <0.00010	<0.00030 <0.00010
Uranium (U)-Dissolved	mg/L	0.020	ND	ND	< 0.000020	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Vanadium (V)-Dissolved Zinc (Zn)-Dissolved	mg/L mg/L	0.020 ⁽²⁾ 3.0 ⁽²⁾	ND ND	0.00072 0.0022	<0.0010 <0.0040	<0.00050 0.0013	<0.00050 0.0018	<0.00050 0.0032	<0.00050 0.0075	<0.00050 0.0015
Zirconium - Dissolved	mg/L	3.0 \	ND	0.0022 ND	<0.00010	<0.00060	<0.00060	<0.00060	<0.00060	<0.0013
Volatile Organic Compounds (Water)	/1	0.005 (2)		-		<0.00050				
Benzene Bromodichloromethane	mg/L mg/L	0.005 (c) 0.1 ⁽²⁾	-	-	-	<0.00050 <0.0010	-	-	-	-
Bromoform	mg/L	0.1(2)	-	-	-	< 0.0010	-	-	-	-
Carbon Tetrachloride	mg/L	$0.002^{(2)}$ $0.08^{(2)}$	-	-	-	<0.00050 <0.0010	-	-	-	-
Chlorobenzene Dibromochloromethane	mg/L mg/L	0.08 ⁽³⁾	-	-	-	<0.0010	-	-	-	-
Chloroethane	mg/L	-	-	-	-	< 0.0010	-	-	-	-
Chloroform Chloromethane	mg/L mg/L	0.1 ⁽²⁾	-	-	-	<0.0010 <0.0050	-	-	-	-
1,2-Dichlorobenzene	mg/L	0.2 ⁽²⁾	-	-	-	< 0.00050	-	-	-	-
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/L mg/L	0.005 ⁽²⁾	-	-	-	<0.0010 <0.0010	-	-	-	-
1,1-Dichloroethane	mg/L	0.03 ⁽²⁾	-	-	-	<0.0010	-	-	-	-
1,2-Dichloroethane	mg/L	0.005 ⁽²⁾	-	-	-	< 0.0010	-	-	-	-
1,1-Dichloroethylene cis-1,2-Dichloroethylene	mg/L mg/L	$0.014^{(2)}$ $0.008^{(2)}$	-	-	-	<0.0010 <0.0010	-	-	-	-
trans-1,2-Dichloroethylene	mg/L	0.08 ⁽²⁾	-	-	-	<0.0010	-	-	-	-
Dichloromethane	mg/L	0.05 ⁽²⁾	-	-	-	<0.0050	-	-	-	-
1,2-Dichloropropane cis-1,3-Dichloropropylene	mg/L mg/L	0.0045 ⁽²⁾	-	-	-	<0.0010 <0.00050	-	-	-	-
trans-1,3-Dichloropropylene	mg/L	1	-	-	-	< 0.00050	-	-	-	-
1,3-Dichloropropene (cis & trans) Ethylbenzene	mg/L mg/L	0.0015 ⁽²⁾ 0.14 ⁽²⁾	-	-	-	<0.0010 <0.00050	-	-	-	-
Methyl t-butyl ether (MTBE)	mg/L	0.14 ⁻⁷ 0.095 ⁽²⁾	-	-	-	<0.00050	-		-	-
Styrene	mg/L	0.8 ⁽²⁾	-	-	-	<0.00050	-	-	-	-
1,1,1,2-Tetrachloroethane	mg/L	$0.006^{(2)}$ $0.008^{(2)}$	-	-	-	<0.0010 <0.00020	-	-	-	-
	ma/I	0.000	-	-	-	<0.00020	-		-	-
1,1,2,2-Tetrachloroethane Tetrachloroethylene	mg/L mg/L	0.03(2)			-	0.00646	-	-	-	-
1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene	mg/L mg/L	0.06 ⁽²⁾	-	-						
1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane	mg/L mg/L mg/L	0.06 ⁽²⁾ 8 ⁽²⁾	-	-	-	< 0.0010	-	-	-	-
1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene	mg/L mg/L	0.06 ⁽²⁾	1				-	-	-	-
1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.06 ⁽²⁾ 8 ⁽²⁾ 0.003 ⁽²⁾ 0.005 ⁽²⁾ 1 ⁽²⁾	-	-	-	<0.0010 <0.00050 <0.0010 <0.0010	-	-	-	-
1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane Vinyl Chloride	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.06 ⁽²⁾ 8 ⁽²⁾ 0.003 ⁽²⁾ 0.005 ⁽²⁾	- - -		- - -	<0.0010 <0.00050 <0.0010 <0.0010 <0.00040	-	-	-	-
1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Trichlorofluoromethane	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	0.06 ⁽²⁾ 8 ⁽²⁾ 0.003 ⁽²⁾ 0.005 ⁽²⁾ 1 ⁽²⁾ 0.002 ⁽²⁾	- - -	- - -	- - - -	<0.0010 <0.00050 <0.0010 <0.0010	- - -			

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2, last updated January 2019
 (3) All criteria limits for BCWQG-Drinking Quality Guidelines based on Total Metal Concentration except Aluminum (Dissolved)
 (4) BC MoE Water Quality Guidelines for Protection of Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 (c) Limit for dissolved metals, not total metals
 (d) Limit dependent upon hardness.
 (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromium VI in sample
 (f) Where hardness data was unavailable, 50 mg/L was assumed
 (g) Maximum value

- (g) Maximum value
 (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows
- * Criteria exceeds detection limit MAC = Maximum Acceptable Concentration AO = Aesthetic Objective

Table 12: Groundwater Quality Results Sampling Location MW-5 (E251534)

		BC MoE Guidelines	22-Oct-12	03-Apr-13	13-Jun-13	05-Apr-17
Field	Units	CSR-DW (2)				
Conductivity pH	uS/cm pH	-	-	-	-	116 7.4
pri Dissolved Oxygen	mg/L	- -	-	-	-	- /.4
Temperature	°C	-	1	-	÷	ī
Water elevation Analyte	m Units	-	-	-	-	-
Conductivity	uS/cm	-	102	-	-	116
Hardness (as CaCO3)	mg/L	-	- 7.5	52.3	-	7.4
pH Total Suspended Solids	pH mg/L	-	7.5	7.3	-	7.7
Total Dissolved Solids	mg/L	-	48	-	-	70
Alkalinity, Total (as CaCO3) Ammonia, Total (as N)	mg/L mg/L	-	53.1 ND	57.8	-	<0.03
Chloride (Cl)	mg/L	-	ND ND	ND	<0.50	<1.0
Fluoride (F)	mg/L	250 (2)	ND	ND	-	< 0.1
Nitrate (as N)	mg/L	1.5 (2)	ND	0.021	-	-
Nitrite (as N)	mg/L	10 (2)	ND	ND	-	< 0.01
Sulfate (SO4) Total Organic Carbon	mg/L mg/L	1.0 ⁽²⁾ 500 ⁽²⁾	ND -	2.03 ND	-	<0.50
BOD	mg/L	-	-	ND	-	- 0.30
COD	mg/L	-	-	-	-	-
Dissolved Metals Aluminum (Al)-Dissolved	mg/L	9.5 ⁽²⁾	ND	0.0036	<0.0050	<0.0050
Antimony (Sb)-Dissolved	mg/L	0.006 ⁽²⁾	ND	0.000106	<0.0050	<0.00010
Arsenic (As)-Dissolved	mg/L	0.01(2)	ND	0.000074	< 0.00050	< 0.00050
Barium (Ba)-Dissolved	mg/L	1.0 ⁽²⁾	0.0060	0.0044	-	< 0.0050
Beryllium (Be)-Dissolved	mg/L	0.008 ⁽²⁾	ND	ND	-	<0.00010
Bisumuth - Dissolved Boron (B)-Dissolved	mg/L mg/L	5.0 ⁽²⁾	ND ND	ND ND	-	<0.00010
Cadmium (Cd)-Dissolved	mg/L mg/L	0.005 ⁽²⁾	ND ND	0.000016	-	<0.004
Calcium (Ca)-Dissolved	mg/L	-	6.40	18.20	-	18.8
Cesium (Cs)- Dissolved	mg/L	- 0.05 (0.0(2)	-	-	-	-
Chromium (Cr)-Dissolved Cobalt (Co)-Dissolved	mg/L	0.05 - 6.0 ⁽²⁾ 0.001 ⁽²⁾	- ND	- ND	-	<0.00005
Copper (Cu)-Dissolved Copper (Cu)-Dissolved	mg/L mg/L	1.5 ⁽²⁾ AO	0.00066	0.00678	-	<0.00005
Iron (Fe)-Dissolved	mg/L	6.5 ⁽²⁾	ND	ND	-	0.0034
Lead (Pb)-Dissolved	mg/L	0.01 ⁽²⁾	ND	ND	-	< 0.0001
Lithium (Li)-Dissolved	mg/L	0.008 (2)	ND	0.0008	-	0.0009
Magnesium (Mg)-Dissolved Manganese (Mn)-Dissolved	mg/L mg/L	1.5 (2)	0.729 0.0963	1.29 0.0115	-	1.35
Mercury (Hg)-Dissolved	mg/L	0.001 ⁽²⁾	0.0903 ND	0.0113 ND	-	0.0757 <0.00002
Molybdenum (Mo)-Dissolved	mg/L	0.25 ⁽²⁾	ND	ND	-	<0.00010
Nickel (Ni)-Dissolved	mg/L	0.08 (2)	ND	0.0129	-	0.005
Phosphorus - Dissolved	mg/L	-	-	-	-	<0.05
Potassium (K)-Dissolved Rubidium (Rb) - Dissolved	mg/L mg/L	-	-	-	-	0.46
Selenium (Se)-Dissolved	mg/L	0.01 (2)	-	-	-	-
Silicon - Dissolved	mg/L	- (2)	ND	3.9	-	4.1
Silver (Ag)-Dissolved	mg/L	0.02 (2)	ND	ND	-	<0.00005
Sodium (Na)-Dissolved Strontium - Dissolved	mg/L mg/L	200 ⁽²⁾	1.81 0.0484	1.51 0.0705	-	1.62 0.0694
Sulfur- Dissolved	mg/L	-	ND	ND	-	<3.0
Tellurium - Dissolved Thallium (Tl)-Dissolved	mg/L	-	-	-	-	<0.00020 <0.00002
Thorium - Dissovled	mg/L mg/L	-	-	-	-	<0.00010
Tin (Sn)-Dissolved	mg/L	2.5 (2)	П	-	-	< 0.00020
Titanium (Ti)-Dissolved	mg/L	- (2)	ND	ND	-	<0.0050
Tungston (W) - Dissolved Uranium (U)-Dissolved	mg/L mg/L	0.003 ⁽²⁾ 0.020	-	-	-	-
Vanadium (V)-Dissolved	mg/L	0.020 (2)	ND	ND	-	< 0.0010
Zinc (Zn)-Dissolved	mg/L	3.0 (2)	ND	0.0703	-	0.0426
Zirconium - Dissolved	mg/L	-	ND	ND	-	< 0.00010
Volatile Organic Compounds (Water) Benzene	mg/L	0.005 (2)	<u>-</u>	_	<0.00050	
Bromodichloromethane	mg/L	0.1 ⁽²⁾	-	-	< 0.0010	-
Bromoform	mg/L	0.1 ⁽²⁾	-	-	<0.0010	-
Carbon Tetrachloride	mg/L	0.002 ⁽²⁾	=	-	< 0.00050	-
Chlorobenzene	mg/L	0.08 ⁽²⁾	-	-	< 0.0010	-
Dibromochloromethane Chloroethane	mg/L mg/L	0.1 ⁽²⁾	-	-	<0.0010 <0.0010	-
Chloroform	mg/L mg/L	0.1(2)	-	-	<0.0010	-
Chloromethane	mg/L	-	-	-	< 0.0050	-
1,2-Dichlorobenzene	mg/L	0.2 ⁽²⁾	-	-	<0.00070	-
1,3-Dichlorobenzene 1,4-Dichlorobenzene	mg/L mg/L	0.005 ⁽²⁾	-	<u>-</u>	<0.0010 <0.0010	-
1,1-Dichloroethane	mg/L	0.005	-	-	<0.0010	-
1,2-Dichloroethane	mg/L	0.005 ⁽²⁾	-	-	<0.0010	-
1,1-Dichloroethylene	mg/L	0.014 ⁽²⁾	-	-	< 0.0010	-
cis-1,2-Dichloroethylene	mg/L	0.008 ⁽²⁾	-	-	< 0.0010	-
trans-1,2-Dichloroethylene	mg/L	0.08 ⁽²⁾	=	-	<0.0010	-
Dichloromethane 1,2-Dichloropropane	mg/L	0.05 ⁽²⁾	-	-	<0.0050	-
cis-1,3-Dichloropropylene	mg/L mg/L	0.0045 ⁽²⁾	-	-	<0.0010 <0.0010	-
trans-1,3-Dichloropropylene	mg/L	-	-	-	< 0.0010	-
1,3-Dichloropropene (cis & trans)	mg/L	0.0015 ⁽²⁾	=	-	<0.0014	-
Ethylbenzene Methyl t-butyl ether (MTRE)	mg/L mg/L	0.14 ⁽²⁾ 0.095 ⁽²⁾	-	-	<0.0050	-
Methyl t-butyl ether (MTBE) Styrene	mg/L mg/L	0.095 ⁽²⁾ 0.8 ⁽²⁾	-	-	<0.00050 <0.00050	-
1,1,2-Tetrachloroethane	mg/L	0.006 ⁽²⁾	-	-	<0.00030	-
1,1,2,2-Tetrachloroethane	mg/L	0.008 ⁽²⁾	=	-	< 0.0010	
Tetrachloroethylene	mg/L	0.03 ⁽²⁾	-	-	< 0.0010	•
Toluene	mg/L	0.06 ⁽²⁾	-	-	< 0.00050	
1,1,1-Trichloroethane	mg/L	8 ⁽²⁾	-	-	<0.0010	-
1,1,2-Trichloroethane	mg/L	0.003 ⁽²⁾	-	-	<0.0010	-
Trichloroethylene Trichlorofluoromethane	mg/L mg/L	0.005 ⁽²⁾	-	-	<0.0010	-
Vinyl Chloride	mg/L mg/L	0.002 ⁽²⁾	-	-	<0.0010 <0.0010	-
			-		-0.0010	
ortho-Xylene	mg/L	-	-	-	< 0.00050	-
			-		<0.00050 <0.00050 <0.00075	-

CSR-DW

⁽¹⁾ BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
(2) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2, last updated January 2019
(3) All criteria limits for BCWQG - Drinking Quality Guidelines based on Total Metal Concentration except Aluminum (Dissolved)
(4) BC MoE Water Quality Guidelines for Protection of Wildlife
(5) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2
(a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C
(b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
(c) Limit for dissolved metals, not total metals
(d) Limit dependent upon hardness.
(e) Limit for chromium(VI) - data reported by lab as total chromium - limit assumes 100% chromium VI in sample
(f) Where hardness data was unavailable, 50 mg/L was assumed
(g) Maximum value
(h) Limit dependent upon chloride concentration
(i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows

^{*} Criteria exceeds detection limit MAC = Maximum Acceptable Concentration AO = Aesthetic Objective

Table 13: Groundwater Quality Results Sampling Location MW-10 (E287382)

		BC MoE Guidelines	22-Oct-12	02-Apr-13
Field	Units	CSR-DW (2)		
Conductivity	uS/cm	-	-	-
оН	pH	-	-	-
Dissolved Oxygen	mg/L	-	-	-
Temperature	°C	-	-	-
Water elevation	m Unite	-	-	-
Analyte Conductivity	Units uS/cm	-	37.1	-
Hardness (as CaCO3)	mg/L	_	-	90.4
H	pН	-	6.9	7
Total Suspended Solids	mg/L	=	-	-
Total Dissolved Solids	mg/L	=	17	-
Alkalinity, Total (as CaCO3)	mg/L	-	17.6	21.7
Ammonia, Total (as N) Fotal Nitrogen as N	mg/L mg/L	<u>-</u> -	ND 0.622	-
Bromide (Br)	mg/L	-	- 0.022	-
Chloride (Cl)	mg/L	250 ⁽²⁾	ND	ND
Fluoride (F)	mg/L	1.5 (2)	ND	ND
Nitrate (as N)	mg/L	10 (2)	0.023	0.038
Nitrite (as N)	mg/L mg/L	1.0 (2)	0.023 ND	0.038 ND
Sulfate (SO4) Fotal Organic Carbon	mg/L	500 ⁽²⁾	-	1.59 1.53
Total Organic Carbon SOD	mg/L mg/L	<u>-</u>	-	1.53
COD	mg/L mg/L	<u> </u>	-	-
Dissolved Metals	mg/L			
Aluminum (Al)-Dissolved	mg/L	9.5 (2)	0.0058	0.0138
Antimony (Sb)-Dissolved	mg/L	0.006 ⁽²⁾	ND	ND
Arsenic (As)-Dissolved	mg/L	0.01(2)	0.00021	0.000167
Barium (Ba)-Dissolved	mg/L	1.0(2)	0.0069	0.00541
Beryllium (Be)-Dissolved	mg/L	0.008 ⁽²⁾	ND	ND
Bisumuth - Dissolved	mg/L mg/L	0.008` ′	ND ND	ND ND
Boron (B)-Dissolved	mg/L	5.0(2)	ND	ND ND
Cadmium (Cd)-Dissolved	mg/L	0.005 ⁽²⁾	0.00114	0.000021
Calcium (Ca)-Dissolved	mg/L mg/L	- 0.005	0.00114	- 0.000021
Cesium (Cs)- Dissolved	mg/L	-	-	
Chromium (Cr)-Dissolved	mg/L	0.05 - 6.0 (2)	ND	0.00061
Cobalt (Co)-Dissolved	mg/L	0.001 (2)	ND	0.000018
Copper (Cu)-Dissolved	mg/L	1.5 ⁽²⁾ AO	0.00267	0.00028
ron (Fe)-Dissolved	mg/L	6.5 ⁽²⁾	0.0107	0.0263
Lead (Pb)-Dissolved	mg/L	0.01 ⁽²⁾	ND	0.0203 ND
Lithium (Li)-Dissolved	mg/L	0.008 (2)	ND	ND ND
Magnesium (Mg)-Dissolved	mg/L mg/L	0.008 `	0.956	0.77
Manganese (Mn)-Dissolved	mg/L	1.5 (2)	0.0036	0.00104
Mercury (Hg)-Dissolved	mg/L mg/L	0.001 ⁽²⁾	0.0036 ND	0.00104 ND
• • •				
Molybdenum (Mo)-Dissolved	mg/L	0.25 ⁽²⁾	ND	0.000135
Nickel (Ni)-Dissolved	mg/L	0.08 (2)	-	-
Phosphorus - Dissolved Potassium (K)-Dissolved	mg/L mg/L	<u>-</u> -	-	-
Rubidium (Rb) - Dissolved	mg/L mg/L	-	-	-
Selenium (Se)-Dissolved	mg/L	0.01 (2)	0.00016	0.00004
Silicon - Dissolved	mg/L	-	5.70	5.20
Silver (Ag)-Dissolved	mg/L	0.02 (2)	ND	ND
Sodium (Na)-Dissolved	mg/L	200(2)	3.65	1.68
Strontium - Dissolved	mg/L	-	0.0390	0.0295
Bulfur- Dissolved	mg/L	-	-	-
Fellurium - Dissolved	mg/L	-	-	-
Thallium (Tl)-Dissolved	mg/L	-	-	-
Thorium - Dissolved	mg/L	- (2)	-	-
Tin (Sn)-Dissolved	mg/L	2.5 (2)	ND	0.00029
Titanium (Ti)-Dissolved	mg/L	- (2)	-	-
Tungston (W) - Dissolved	mg/L	0.003 (2)	-	-
Jranium (U)-Dissolved	mg/L	0.020	0.00046	0.000009
Vanadium (V)-Dissolved	mg/L	0.020 (2)	ND	0.00075
Zinc (Zn)-Dissolved	mg/L	3.0 (2)	0.0065	ND
Zirconium - Dissolved	mg/L	_	ND	ND

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2, last updated January 2019
 (3) All criteria limits for BCWQG Drinking Quality Guidelines based on Total Metal Concentration except Aluminum (Dissolved)
 (4) BC MoE Water Quality Guidelines for Protection of Wildlife
 (5) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 (c) Limit for dissolved metals, not total metals
 (d) Limit dependent upon hardness.
 (e) Limit for chromium(I) data reported by lab as total chromium limit assumes 100% chromium VI in sample
 (f) Where hardness data was unavailable, 50 mg/L was assumed
 (g) Maximum value
 (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows
- * Criteria exceeds detection limit

 MAC = Maximum Acceptable Concentration

 AO = Aesthetic Objective

Table 14: Groundwater Quality Results Sampling Location MW-12 (E287384)

		BC MoE Guidelines	22-Oct-12	03-Apr-13	19-Jul-18	25-Mar-19
Field Conductivity	Units uS/cm	CSR-DW (2)	-	_	_	62.8
nH	pH	-	-	-	-	6.9
Dissolved Oxygen	mg/L	-	-	_	-	11.3
Temperature	°C	-	-	-	-	5.3
Water elevation	m	-	-	-	-	43.96
Analyte	Units					
Hardness (as CaCO3)	mg/L	-	-	76.5	50.9	53.8
pH Alkalinity, Total (as CaCO3)	pH	-	8 72.3	7.9 75.5	70.5	7.84 51.2
Ammonia, Total (as N)	mg/L mg/L		ND	- 13.3	<0.0050	0.0112
Chloride (Cl)	mg/L	250 ⁽²⁾	1	1.3	< 0.50	< 0.50
Fluoride (F)	mg/L	1.5 (2)	ND	ND	0.059	0.046
Nitrate (as N)	mg/L	10 (2)	0.026	0.041	0.0271	0.0247
Nitrite (as N)	mg/L	1.0 (2)	ND	ND	< 0.0010	<0.0010
Sulfate (SO4)	mg/L	500 (2)	-	2.24	1.02	1.1
Total Organic Carbon	mg/L	500	-	4.01	1.7	2.29
COD	mg/L	_	-	-	<20	<20
Dissolved Metals						
Aluminum (Al)-Dissolved	mg/L	9.5 (2)	0.0043	0.0074	0.0072	0.0059
Antimony (Sb)-Dissolved	mg/L	0.006 ⁽²⁾	ND	0.000334	< 0.00010	< 0.00010
Arsenic (As)-Dissolved	mg/L	0.01 ⁽²⁾	ND	0.000142	< 0.00010	0.00018
Barium (Ba)-Dissolved	mg/L	1.0(2)	0.0143	0.0155	0.0156	0.0154
Beryllium (Be)-Dissolved	mg/L	0.008 ⁽²⁾	ND	ND	< 0.00010	< 0.00010
Bisumuth - Dissolved	mg/L	-	ND	ND	< 0.000050	< 0.000050
Boron (B)-Dissolved	mg/L	5.0(2)	ND	ND	< 0.010	< 0.010
Cadmium (Cd)-Dissolved	mg/L	0.005(2)	0.000020	0.000054	0.000144	0.000017
Calcium (Ca)-Dissolved	mg/L	-	-	-	18	19.3
Cesium (Cs)- Dissolved	mg/L	-	=	-	< 0.000010	< 0.000010
Chromium (Cr)-Dissolved	mg/L	0.05 - 6.0 (2)	ND	0.00139	0.00045	0.0004
Cobalt (Co)-Dissolved	mg/L	0.001 (2)	ND	0.000037	< 0.00010	< 0.00010
Copper (Cu)-Dissolved	mg/L	1.5 ⁽²⁾ AO	0.00085	0.0013	0.00044	< 0.00020
Iron (Fe)-Dissolved	mg/L	6.5 ⁽²⁾	ND	0.0148	0.011	0.011
Lead (Pb)-Dissolved	mg/L	0.01 ⁽²⁾	ND	ND	< 0.000050	< 0.000050
Lithium (Li)-Dissolved	mg/L	0.008 (2)	ND	0.00066	< 0.0010	< 0.0010
Magnesium (Mg)-Dissolved	mg/L	-	2.00	1.74	1.45	1.39
Manganese (Mn)-Dissolved	mg/L	1.5 (2)	0.0016	0.00378	0.00205	0.0055
Mercury (Hg)-Dissolved	mg/L	0.001(2)	ND	ND	< 0.0000050	0.0000113
Molybdenum (Mo)-Dissolved	mg/L	0.25(2)	ND	0.0002	0.00009	0.000165
Nickel (Ni)-Dissolved	mg/L	0.08 (2)	-	-	< 0.00050	< 0.00050
Phosphorus - Dissolved	mg/L	-	-	-	< 0.050	< 0.050
Potassium (K)-Dissolved	mg/L	-	=	-	0.42	0.357
Rubidium (Rb) - Dissolved	mg/L		-	-	0.00036	0.00043
Selenium (Se)-Dissolved	mg/L	0.01 (2)	ND	0.000061	< 0.000050	0.000063
Silicon - Dissolved	mg/L	- (2)	5.91	5.17	5.29	5.74
Silver (Ag)-Dissolved	mg/L	0.02 (2)	ND	ND	< 0.000010	< 0.000010
Sodium (Na)-Dissolved	mg/L	200(2)	2.11	1.92	1.65	1.52
Strontium - Dissolved	mg/L	-	0.0758	0.0782	0.0757 <0.50	0.0804 <0.50
Sulfur- Dissolved Tellurium - Dissolved	mg/L mg/L	-	-	-	<0.50 <0.00020	<0.50 <0.00020
Thallium (Tl)-Dissolved	mg/L mg/L	-	-	 	<0.00020	<0.00020
Thorium - Dissolved	mg/L	-	-	-	< 0.00010	<0.00010
Tin (Sn)-Dissolved	mg/L	2.5 (2)	ND	ND	0.00054	< 0.00010
Titanium (Ti)-Dissolved	mg/L		-		< 0.00030	< 0.00030
Tungston (W) - Dissolved	mg/L	0.003 (2)	-	-	< 0.00010	< 0.00010
Uranium (U)-Dissolved	mg/L	0.020	ND	0.000018	< 0.000010	0.000021
Vanadium (V)-Dissolved	mg/L	0.020 (2)	ND	0.00068	< 0.00050	< 0.00050
Zinc (Zn)-Dissolved	mg/L	3.0 (2)	ND	ND	0.0015	< 0.0010
Zirconium - Dissolved	mg/L	-	ND	ND	< 0.000060	< 0.000060

- (1) BC MoE. Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2, last updated January 2019
 (3) All criteria limits for BCWQG Drinking Quality Guidelines based on Total Metal Concentration except Aluminum (Dissolved)
 (4) BC MoE Water Quality Guidelines for Protection of Wildlife
 (5) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 (c) Limit for dissolved metals, not total metals
 (d) Limit dependent upon hardness.
 (e) Limit for chromitum(I) data reported by lab as total chromitum limit assumes 100% chromitum VI in sample
 (f) Where hardness data was unavailable, 50 mg/L was assumed
 (g) Maximum value
 (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows

- * Criteria exceeds detection limit MAC = Maximum Acceptable Concentration AO = Aesthetic Objective

Table 15: Surface Water Quality Results Sampling Location SW-01 (Onion Lake)

		BC MoE Guidelines	22-Oct-12	2-Apr-17	5-Jul-17	26-Sep-17	26-Sep-17	26-Sep-17	8-Nov-17	17-Jul-18	17-Jul-18	17-Jul-18
Field	Units	BCWQG-AW (1)				Sample	Duplicate	RPD		Sample	Duplicate	RPD
Conductivity	uS/cm	-	-	-	28.5 6.3	25.7 8.1	25.7 8.1	0.00%	19.9 7.9	25.9	-	-
pH Temperature	pH °C	÷ .	-	-	20	15.7	15.7	0.00%	5.4	7.5 20.2	-	-
Dissolved Oxygen Analyte	mg/L Units		-	-	6.49	11.6	11.6	0.00%	9.7	0.6	-	-
Conductivity	uS/cm	-	33.7	14.1	30.3	30.8	30.5	0.98%	-	-	-	-
Hardness (as CaCO3) pH	mg/L pH	6.5-9.0	3.9 6.3	1.4 6.6	2.95 6.8	3.55 6.7	3.55 6.6	0.00% 1.50%	2.81 6.8	2.48 6.9	2.46	0.40% 2.16%
Total Suspended Solids	mg/L	25 mg/L (backgr. 25-250 mg/l)) (i)	-	-	2	2.3	<1.0	-	-	-	-	-
Total Dissolved Solids Alkalinity, Total (as CaCO3)	mg/L mg/L	-	16 3.9	2.3	20 4	50 3	27 3	59.74% 0.00%	-	-	-	<u> </u>
Ammonia, Total (as N)	mg/L	0.681-28.7 (a)	ND	0.03	< 0.03	< 0.03	< 0.03	-	< 0.0050	0.006	0.0092	21.05%
Total Nitrogen as N Bromide (Br)	mg/L mg/L	-	-	0.108	0.051	0.161	0.15	7.07%	<0.050	-	-	-
Chloride (Cl)	mg/L	600	10.3	3.9	6.9	7.1	6.9	2.86%	6.85	6.22	6.64	3.27%
Fluoride (F) Nitrate (as N)	mg/L mg/L	0.4-1.87 (d) 32.8	ND ND	ND ND	<0.10 <0.01	<0.1 0.017	<0.10 0.014	19.35%	0.027 <0.0050	0.023 <0.0050	0.022 <0.0050	2.22%
Nitrite (as N)	mg/L	0.06-0.6 (h) 128-429 (d)	ND 0.62	ND	<0.01	<0.01	<0.01	-	<0.0010	<0.0010	<0.0010	-
Sulfate (SO4) Total Organic Carbon	mg/L mg/L	+/- 20% of background	2.15	1.1 0.65	<1.0 <0.50	<1.0 1.68	<1.0 1.76	4.65%	0.31	<0.30	<0.30	-
BOD COD	mg/L mg/L	-	-	ND -	<4.0	<4.0	<4.0	-	<2.0 <20	<2.0 <20	<2.0 <20	-
Total Metals	mg/L	-		-	_	-	_	_		-20	-20	
Aluminum (Al)-Total Antimony (Sb)-Total	mg/L mg/L	0.009	0.0065 ND	0.0058 ND	0.0142 <0.00010	0.021 <0.00020	0.0068 <0.00020	102.16%	0.0489 <0.00010	0.0105 <0.00010	0.0085 <0.00010	10.53%
Arsenic (As)-Total	mg/L	0.005	ND	ND	< 0.00050	< 0.00050	< 0.00050	-	0.00010	0.00012	0.00012	0.00%
Barium (Ba)-Total Beryllium (Be)-Total	mg/L mg/L	1 0.00013	0.0127 ND	0.0041 ND	<0.0050 <0.00010	0.0051 <0.00010	<0.0050 <0.00010	-	0.00647 <0.00010	0.00533 <0.00010	0.00508 <0.00010	2.40%
Bismuth	mg/L	-	ND	ND	< 0.00010	< 0.00010	< 0.00010	-	< 0.000050	< 0.000050	< 0.000050	-
Boron (B)-Total Cadmium (Cd)-Total	mg/L mg/L	1.2	ND 0.000056	ND 0.000014	0.007 <0.000010	0.0059 <0.000010	0.0053 <0.000010	10.71%	<0.010 0.0000209	<0.010 <0.0000050	<0.010 <0.0000050	-
Calcium (Ca)-Total	mg/L	<4 sensitive to acid input	1.22	0.434	1	1.16	1.16	0.00%	0.912 0.000011	0.824 <0.000010	0.823 <0.000010	0.06%
Cessium (Cs) - Total Chromium (Cr)-Total	mg/L mg/L	0.001 (e)	- ND	ND ND	<0.00050	<0.00050	<0.00050	-	< 0.00010	< 0.00010	<0.000010 <0.00010	-
Cobalt (Co)-Total Copper (Cu)-Total	mg/L mg/L	0.11 0.0032-0.0396 (d,f)	ND 0.00106	0.00025 0.00025	<0.00010 <0.00020	<0.00010 <0.00040	<0.00010 <0.00040	-	<0.00010 <0.00050	<0.00010 <0.00050	<0.00010 <0.00050	-
Iron (Fe)-Total	mg/L	1	0.0304	0.0165	0.011	0.022	0.015	37.84%	0.089	0.010	< 0.010	-
Lead (Pb)-Total Lithium (Li)-Total	mg/L mg/L	0.011-0.402 (d,f)	ND ND	ND ND	<0.00010 0.0001	<0.00020 0.00012	<0.00020 0.0001	18.18%	0.000108 <0.0010	<0.000050 <0.0010	<0.000050 <0.0010	-
Magnesium (Mg)-Total	mg/L	-	0.209	0.076	0.144	0.161	0.155	3.80%	0.149	0.135	0.127	3.05%
Manganese (Mn)-Total Mercury (Hg)-Total	mg/L mg/L	0.8-3.4 (d,f) 0.0001	0.0211 ND	0.0078 ND	0.00787 <0.000020	0.0147 <0.000010	0.0135 <0.000010	8.51%	0.0602 <0.000025	0.0116 <0.000050	0.0107 <0.0000050	4.04%
Molybdenum (Mo)-Total	mg/L	2	ND	ND	< 0.00010	< 0.00010	< 0.00010	-	< 0.000050	< 0.000050	< 0.000050	-
Nickel (Ni)-Total Phosphorus - Total	mg/L mg/L	0.025-0.15 (d,f) 0.005-0.015 (lakes only)	ND ND	ND -	<0.00020 <0.050	<0.00040 <0.050	<0.00040 <0.050	-	<0.00050 <0.050	<0.00050 <0.050	<0.00050 <0.050	-
Potassium (K)-Total	mg/L	-	0.270	0.128	0.17	0.19	0.19	0.00%	0.228	0.154	0.144	3.36%
Rubidium (Rb) - Total Selenium (Se)-Total	mg/L mg/L	0.002	- ND	- ND	<0.00050	<0.00050	<0.00050	-	0.00035 <0.000050	0.00026 <0.000050	0.00023 <0.000050	6.12%
Silicon - Total	mg/L	-	0.486	ND	<1.0	<1.0	<1.0	-	0.13	< 0.10	< 0.10	-
Silver (Ag)-Total Sodium (Na)-Total	mg/L mg/L	0.0001-0.003 (d) -	ND 5.53	ND 2	0.000055 4.16	<0.000050 4.63	<0.000050 4.49	3.07%	<0.000010 4.32	<0.000010 3.83	<0.000010 3.72	1.46%
Strontium - Total Sulfur - Total	mg/L	-	0.0116 ND	0.0034 ND	0.0075 <3.0	0.0076 <3.0	0.0073 <3.0	4.03%	0.00777 <0.50	0.00669 <0.50	0.00655 <0.50	1.06%
Tellurium - Total	mg/L mg/L	-	-	-	< 0.00020	<0.00050	< 0.00050	-	<0.00020	<0.00020	<0.00020	-
Thallium (Tl)-Total Thorium - Total	mg/L mg/L	0.0008	ND	ND -	<0.000020 <0.00010	<0.000020 <0.00010	<0.000020 <0.00010	-	<0.000010 <0.00010	<0.000010 <0.00010	<0.000010 <0.00010	-
Tin (Sn)-Total	mg/L	-	ND	ND	< 0.00020	< 0.00020	< 0.00020	-	< 0.00010	< 0.00010	< 0.00010	-
Titanium (Ti)-Total Tungsten (W) - Total	mg/L mg/L	-	ND -	ND -	<0.0050	<0.0050	<0.0050	-	0.00177 <0.00010	0.00031 <0.00010	<0.00030 <0.00010	-
Uranium (U)-Total	mg/L	0.0085	ND	ND	<0.000020	< 0.000020	<0.000020	-	< 0.000010	< 0.000010	<0.000010	
Vanadium (V)-Total Zinc (Zn)-Total	mg/L mg/L	- 0.033-0.34 (d,f)	ND ND	ND ND	<0.0010 <0.0040	<0.0010 0.005	<0.0010 <0.0040	-	<0.00050 <0.0030	<0.00050 <0.0030	<0.00050 <0.0030	-
Zirconium - Total	mg/L		ND	ND	< 0.00010	< 0.00010	< 0.00010	-	<0.000060	<0.000060	<0.000060	-
Dissolved Metals Aluminum (Al)-Dissolved	mg/L	0.023-0.1 (b,c)	0.0034	0.0038	< 0.0050	< 0.0050	< 0.0050	-	< 0.0010	0.0037	0.0036	1.37%
Antimony (Sb)-Dissolved	mg/L	-	ND ND	ND 0.00005	<0.00010 <0.00050	<0.00020 <0.00050	<0.00020 <0.00050	-	<0.00010 0.00014	<0.00010 <0.00010	<0.00010 <0.00010	-
Arsenic (As)-Dissolved Barium (Ba)-Dissolved	mg/L mg/L	-	0.0128	0.0045	< 0.0050	< 0.0050	< 0.0050	-	0.00515	0.00475	0.00466	0.96%
Beryllium (Be)-Dissolved Bisumuth - Dissolved	mg/L mg/L	-	ND ND	ND ND	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	-	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050	-
Boron (B)-Dissolved	mg/L	-	ND	ND	< 0.0050	< 0.0050	< 0.0050	-	< 0.010	< 0.010	< 0.010	-
Cadmium (Cd)-Dissolved Cessium (Cs) - Dissovled	mg/L mg/L	0.000027 - 0.00280 (d, f) -	0.00110	0.00001	<0.000010	<0.000010	<0.000010	-	0.0000051 0.887	<0.0000050 0.791	<0.0000050 0.792	0.06%
Calcium (Ca)-Dissolved	mg/L	-	1.22 ND	0.43 ND	0.98 <0.00050	1.09 <0.00050	1.06 <0.00050	2.79%	< 0.000010	< 0.000010	< 0.000010	-
Chromium (Cr)-Dissolved Cobalt (Co)-Dissolved	mg/L mg/L	- -	ND	ND 0.00001	<0.00050 <0.00010	<0.00050 <0.00010	<0.00050 <0.00010	-	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	-
Copper (Cu)-Dissolved Iron (Fe)-Dissolved	mg/L	0.35	0.00098 0.0101	ND ND	<0.00020 0.01	<0.00040 <0.010	<0.00040 <0.010	-	<0.00020 <0.010	<0.00020 <0.010	<0.00020 <0.010	-
Lead (Pb)-Dissolved	mg/L mg/L	-	ND	ND	< 0.00010	< 0.00020	< 0.00020	-	< 0.000050	< 0.000050	< 0.000050	-
Lithium (Li)-Dissolved Magnesium (Mg)-Dissolved	mg/L mg/L	-	ND 0.207	ND ND	<0.00010 0.124	<0.00010 0.153	<0.00010 0.146	4.68%	<0.0010 0.145	<0.0010 0.122	<0.0010 0.118	1.67%
Manganese (Mn)-Dissolved	mg/L	-	0.0157	ND	0.00533	0.00377	0.00355	6.01%	0.00767	0.00730	0.00673	4.06%
Mercury (Hg)-Dissolved Molybdenum (Mo)-Dissolved	mg/L mg/L	-	ND ND	ND ND	<0.00010	<0.000010 <0.00010	<0.000010 <0.00010	-	<0.0000050 <0.000050	<0.0000050 <0.000050	<0.0000050 <0.000050	-
Nickel (Ni)-Dissolved	mg/L	-	ND	ND	< 0.00020	< 0.00040	< 0.00040	-	< 0.00050	< 0.00050	< 0.00050	-
Phosphorus - Dissovled Potassium (K)-Dissolved	mg/L mg/L	-	0.243	ND -	<0.050 0.12	<0.050 0.19	<0.050 0.19	0.00%	<0.050 0.187	<0.050 0.131	<0.050 0.143	4.38%
Rubidum (Rb) - Dissolved	mg/L	-	-	ND	-	-	-	-	0.00027	0.00025	0.00023	4.17%
Selenium (Se)-Dissolved Silicon - Dissolved	mg/L mg/L	-	ND 0.478	ND ND	<0.00050 <1.0	<0.00050 <1.0	<0.00050 <1.0	-	<0.000050 0.066	<0.000050 <0.050	<0.000050 <0.050	-
Silver (Ag)-Dissolved Sodium (Na)-Dissolved	mg/L mg/L	-	ND 5.48	ND 1.99	<0.000050 3.75	<0.000050 4.5	<0.000050 4.33	3.85%	<0.000010 4.44	<0.000010 3.67	<0.000010 3.62	0.69%
Strontium - Dissolved	mg/L	-	0.0115	0.0039	0.0064	0.0073	0.0072	1.38%	0.00759	0.00637	0.00645	0.69%
Sulfur- Dissolved Tellurium - Dissolved	mg/L mg/L	-	ND -	ND ND	<3.0 <0.00020	<3.0 <0.00050	<3.0 <0.00050	-	<0.50 <0.00020	<0.50 <0.00020	<0.50 <0.00020	-
Thallium (Tl)-Dissolved	mg/L	-	ND	ND	< 0.000020	< 0.000020	< 0.000020	-	< 0.000010	< 0.000010	< 0.000010	-
Thorium - Dissovled Tin (Sn)-Dissolved	mg/L mg/L	<u>-</u>	- ND	ND ND	<0.00010 <0.00020	<0.00010 <0.00020	<0.00010 <0.00020	-	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	-
Titanium (Ti)-Dissolved	mg/L	-	ND	ND	< 0.0050	< 0.0050	< 0.0050	-	< 0.00030	< 0.00030	< 0.00030	-
Tungsten (W) - Dissolved Uranium (U)-Dissolved	mg/L mg/L	-	- ND	- ND	<0.000020	<0.000020	<0.000020	-	<0.00010 <0.000010	<0.00010 <0.000010	<0.00010 <0.000010	
Vanadium (V)-Dissolved	mg/L	-	ND	ND	< 0.0010	< 0.0010	< 0.0010	-	< 0.00050	< 0.00050	< 0.00050	-
Zinc (Zn)-Dissolved Zirconium - Dissolved	mg/L mg/L	-	0.0067 ND	0.0047 ND	0.0041 <0.00010	0.0054 <0.00010	<0.0040 <0.00010	-	<0.0010 <0.000060	<0.0010 <0.000060	<0.0010 <0.000060	-
					•	-				-	-	

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for protection of aquatic life or drinking water, Schedule 3.2, last updated July 2018 (3) All criteria limits for BCWQG - Aquatic Life Guidelines based on Total Metal Concentration except Aluminum (Dissolved) and Cadmium (Dissolved)
- (4) BC MoE Water Quality Guidelines for Protection of Wildlife
- (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L. (c) Limit for dissolved metals, not total metals

- (d) Limit dependent upon hardness.
- (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromium VI in sample
- (f) Where hardness data was unavailable, 50~mg/L was assumed
- (g) Maximum value (h) Limit dependent upon chloride concentration
- (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows

BC Water Quality Guidelines for Protection of Aquatic Life

* Criteria exceeds detection limit

MAC = Maximum Acceptable Concentration

AO = Aesthetic Objective

BCWQG-AW

Table 15: Surface Water Quality Results Sampling Location SW-01

		BC MoE Guidelines BCWQG-AW (1)	19-Nov-18	29-Mar-19 frozen	25-Jun-19	25-Jun-19	25-Jun-19
Field	Units	De WQG-AW (1)		nozen		duplicate	RPD
Conductivity pH	uS/cm pH	<u> </u>	18.7 7.8	frozen frozen	22.9 7.9		-
Temperature	°C	-	7	frozen	18.6		-
Dissolved Oxygen Analyte	mg/L Units	-	7.1	frozen	7.5		-
Conductivity	uS/cm	-	-	frozen	-	-	-
Hardness (as CaCO3) pH	mg/L pH	6.5-9.0	2.67 6.7	frozen frozen	2.49 6.5	2.49 6.61	0.00%
Total Suspended Solids	mg/L	25 mg/L (backgr. 25-250 mg/l)) (i)	-	frozen	0.5	0.01	-
Total Dissolved Solids Alkalinity, Total (as CaCO3)	mg/L mg/L	<u> </u>	-	frozen frozen			-
Ammonia, Total (as N)	mg/L	0.681-28.7 (a)	< 0.0050	frozen	< 0.0050	< 0.0050	-
Total Nitrogen as N Bromide (Br)	mg/L mg/L	<u> </u>	<0.050	frozen frozen	<0.050	<0.050	-
Chloride (Cl)	mg/L	600	6.14	frozen	5.69	6.00	2.65%
Fluoride (F) Nitrate (as N)	mg/L mg/L	0.4-1.87 (d) 32.8	0.025 <0.0050	frozen frozen	0.025 <0.0050	0.032 <0.0050	12.28%
Nitrite (as N)	mg/L mg/L	0.06-0.6 (h)	<0.0030	frozen	< 0.0030	<0.0030	-
Sulfate (SO4)	mg/L	128-429 (d)	< 0.30	frozen	< 0.30	0.30	-
Total Organic Carbon BOD	mg/L mg/L	+/- 20% of background	<2.0	frozen frozen	<2.0	<2.0	-
COD	mg/L	-	<20	frozen	<20	<20	-
Total Metals Aluminum (Al)-Total	mg/L	-	0.0067	frozen	0.0256	0.0115	38.01%
Antimony (Sb)-Total	mg/L	0.009	< 0.00010	frozen	< 0.00010	< 0.00010	-
Arsenic (As)-Total Barium (Ba)-Total	mg/L mg/L	0.005	<0.00010 0.00559	frozen frozen	0.00022 0.00506	0.00017 0.00464	12.82% 4.33%
Beryllium (Be)-Total	mg/L	0.00013	< 0.00010	frozen	< 0.00010	< 0.00010	-
Bismuth Boron (B)-Total	mg/L mg/L	1.2	<0.000050 <0.010	frozen frozen	<0.000050 <0.010	<0.000050 <0.010	-
Cadmium (Cd)-Total	mg/L mg/L	-	< 0.0000050	frozen	0.0000128	0.0000075	26.11%
Calcium (Ca)-Total Cessium (Cs) - Total	mg/L mg/L	<4 sensitive to acid input	0.905 <0.000010	frozen frozen	0.791 <0.000010	0.842 <0.000010	3.12%
Chromium (Cr)-Total	mg/L mg/L	0.001 (e)	<0.00010	frozen	<0.00010	<0.00010	
Cobalt (Co)-Total	mg/L	0.11	<0.00010	frozen	<0.00010	<0.00010	-
Copper (Cu)-Total Iron (Fe)-Total	mg/L mg/L	0.0032-0.0396 (d,f)	0.00069 0.028	frozen frozen	<0.00050 0.031	<0.00050 <0.010	-
Lead (Pb)-Total	mg/L	0.011-0.402 (d,f)	< 0.000050	frozen	0.000127	< 0.000050	-
Lithium (Li)-Total Magnesium (Mg)-Total	mg/L mg/L	<u> </u>	<0.0010 0.130	frozen frozen	<0.0010 0.120	<0.0010 0.115	2.13%
Manganese (Mn)-Total	mg/L	0.8-3.4 (d,f)	0.0394	frozen	0.0233	0.0177	13.66%
Mercury (Hg)-Total Molybdenum (Mo)-Total	mg/L mg/L	0.0001	<0.000050 <0.000050	frozen frozen	<0.0000050 <0.000050	<0.0000050 <0.000050	-
Nickel (Ni)-Total	mg/L	0.025-0.15 (d,f)	< 0.00050	frozen	< 0.00050	< 0.00050	-
Phosphorus - Total Potassium (K)-Total	mg/L mg/L	0.005-0.015 (lakes only)	<0.050 0.146	frozen frozen	<0.050 0.142	<0.050 0.147	1.73%
Rubidium (Rb) - Total	mg/L	-	0.00030	frozen	0.00027	0.00023	8.00%
Selenium (Se)-Total Silicon - Total	mg/L	0.002	<0.000050 0.19	frozen frozen	<0.000050 0.11	<0.000050 0.10	4.76%
Silver (Ag)-Total	mg/L mg/L	0.0001-0.003 (d)	<0.000010	frozen	<0.000010	<0.00010	4.70%
Sodium (Na)-Total	mg/L	-	3.89	frozen	3.44	3.45	0.15%
Strontium - Total Sulfur - Total	mg/L mg/L	<u> </u>	0.00755 <0.50	frozen frozen	0.00669 <0.50	0.00670 <0.50	0.07%
Tellurium - Total	mg/L	-	< 0.00020	frozen	< 0.00020	< 0.00020	-
Thallium (Tl)-Total Thorium - Total	mg/L mg/L	0.0008	<0.000010 <0.00010	frozen frozen	<0.000010 <0.00010	<0.000010 <0.00010	-
Tin (Sn)-Total	mg/L	-	< 0.00010	frozen	< 0.00010	< 0.00010	-
Titanium (Ti)-Total Tungsten (W) - Total	mg/L mg/L	-	<0.00030 <0.00010	frozen frozen	0.00033 <0.00010	<0.00030 <0.00010	-
Uranium (U)-Total	mg/L	0.0085	<0.00010	frozen	< 0.00010	< 0.00010	-
Vanadium (V)-Total Zinc (Zn)-Total	mg/L	- 0.033-0.34 (d,f)	<0.00050 <0.0030	frozen frozen	<0.00050 <0.0030	<0.00050 <0.0030	-
Zirconium - Total	mg/L mg/L	- (u,1)	<0.000060	frozen	<0.0030	<0.0030	-
Dissolved Metals	/1	0.022.0.1.(1)	0.0015	C	0.0020	0.0027	2 (20/
Aluminum (Al)-Dissolved Antimony (Sb)-Dissolved	mg/L mg/L	0.023-0.1 (b,c)	0.0015 <0.00010	frozen frozen	0.0039 <0.00010	0.0037 <0.00010	2.63%
Arsenic (As)-Dissolved	mg/L	-	< 0.00010	frozen	< 0.00010	< 0.00010	-
Barium (Ba)-Dissolved Beryllium (Be)-Dissolved	mg/L mg/L	-	0.00553 <0.00010	frozen frozen	0.00460 <0.00010	0.00460 <0.00010	0.00%
Bisumuth - Dissolved	mg/L	-	< 0.000050	frozen	< 0.000050	< 0.000050	-
Boron (B)-Dissolved Cadmium (Cd)-Dissolved	mg/L mg/L	0.000027 - 0.00280 (d, f)	<0.010 <0.0000050	frozen frozen	<0.010 <0.000050	<0.010 0.0000052	-
Cessium (Cs) - Dissovled	mg/L	-	0.854	frozen	0.796	0.802	0.38%
Calcium (Ca)-Dissolved Chromium (Cr)-Dissolved	mg/L mg/L	<u> </u>	<0.000010 <0.00010	frozen frozen	<0.000010 <0.00010	<0.000010 <0.00010	-
Cobalt (Co)-Dissolved	mg/L	-	< 0.00010	frozen	< 0.00010	< 0.00010	-
Copper (Cu)-Dissolved Iron (Fe)-Dissolved	mg/L mg/L	0.35	<0.00020 <0.010	frozen frozen	<0.00020 <0.010	<0.00020 <0.010	-
Lead (Pb)-Dissolved	mg/L mg/L	-	<0.010	frozen	<0.010	<0.00050	-
Lithium (Li)-Dissolved	mg/L	-	<0.0010	frozen	<0.0010	<0.0010	0.9207
Magnesium (Mg)-Dissolved Manganese (Mn)-Dissolved	mg/L mg/L	<u> </u>	0.131 0.02730	frozen frozen	0.121 0.01890	0.119 0.0252	0.83% 14.29%
Mercury (Hg)-Dissolved	mg/L	-	< 0.0000050	frozen	<0.000050	<0.0000050	-
Molybdenum (Mo)-Dissolved Nickel (Ni)-Dissolved	mg/L mg/L	-	<0.000050 <0.00050	frozen frozen	<0.000050 <0.00050	<0.000050 <0.00050	-
Phosphorus - Dissovled	mg/L	-	< 0.050	frozen	< 0.050	< 0.050	-
Potassium (K)-Dissolved Rubidum (Rb) - Dissolved	mg/L mg/L	-	0.154 0.00025	frozen frozen	0.145 0.00025	0.138 0.00025	2.47% 0.00%
Selenium (Se)-Dissolved	mg/L	-	< 0.000050	frozen	< 0.000050	< 0.000050	-
Silicon - Dissolved Silver (Ag)-Dissolved	mg/L mg/L	<u> </u>	0.110 <0.000010	frozen frozen	0.096 <0.000010	0.075 <0.000010	12.28%
Sodium (Na)-Dissolved	mg/L	-	3.83	frozen	3.61	3.42	2.70%
Strontium - Dissolved Sulfur- Dissolved	mg/L	<u>-</u>	0.00762 <0.50	frozen frozen	0.00626 <0.50	0.00613 <0.50	1.05%
Tellurium - Dissolved	mg/L mg/L	<u> </u>	<0.00020	frozen	<0.50	<0.50 <0.00020	<u> </u>
Thallium (Tl)-Dissolved	mg/L	-	<0.000010	frozen	<0.00010	<0.000010	-
Thorium - Dissovled Tin (Sn)-Dissolved	mg/L mg/L	-	<0.00010 <0.00010	frozen frozen	<0.00010 <0.00010	<0.00010 <0.00010	-
Titanium (Ti)-Dissolved	mg/L	-	< 0.00030	frozen	< 0.00030	< 0.00030	-
Tungsten (W) - Dissolved Uranium (U)-Dissolved	mg/L mg/L	<u> </u>	<0.00010 <0.000010	frozen frozen	<0.00010 <0.000010	<0.00010 <0.000010	-
Vanadium (V)-Dissolved	mg/L	-	< 0.00050	frozen	< 0.00050	< 0.00050	-
Zinc (Zn)-Dissolved	mg/L	-	<0.0010	frozen	<0.0010	< 0.0010	-
	_						

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for protection of aquatic life or drinking water, S
 (3) All criteria limits for BCWQG Aquatic Life Guidelines based on Total Metal Concentratio
- (4) BC MoE Water Quality Guidelines for Protection of Wildlife
- (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L. (c) Limit for dissolved metals, not total metals
- (d) Limit dependent upon hardness.
- (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chro
- (f) Where hardness data was unavailable, 50~mg/L was assumed
- (g) Maximum value (h) Limit dependent upon chloride concentration
- (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change
- * Criteria exceeds detection limit

 MAC = Maximum Acceptable Concentration

 AO = Aesthetic Objective

BCWQG-AW BC Water Quality Guidelines for Protection of Aquatic

Table 16: Surface Water Quality Results Sampling Location SW-02 (Upper Clearwater Lake)

		BC MoE Guidelines BCWQG-AW (1)	22-Oct-12	2-Apr-13	6-Apr-17	5-Jul-17	26-Sep-17	8-Nov-17	17-Jul-18	19-Nov-18
Field Conductivity	Units uS/cm	-	_	_	137.5	28.8	113	97.9	124.1	98.3
рН	pH	-	-	-	7.7	8.3	8.3	8.1	7.9	7.3
Temperature	°C	-	-	-	5.2	6.8	11.4	5.3	14.5	5.8
Dissolved Oxygen Flow Rate	mg/L m/s	-	-	-	-	2.5	13.6	9.4	4.2	6.1
Analyte	Units									
Conductivity Hardness (as CaCO3)	uS/cm	-	154 74.8	154 75.6	148 69.4	164 76.6	161 77.8	- 78	75.3	74.4
pH	mg/L pH	6.5-9.0	7.8	/5.6	7.9	8.1	8.1	8.2	8.3	8.2
Total Suspended Solids	mg/L	25 mg/L (backgr. 25-250 mg/l)) (i)	-	ND	<1.0	<1.0	<1.0	-	-	-
Total Dissolved Solids	mg/L	-	73 77	105 75.7	89 73	79 80	93 79	-	-	-
Alkalinity, Total (as CaCO3) Ammonia, Total (as N)	mg/L mg/L	2.0-26.5 (a)	ND	ND	<0.03	<0.03	<0.03	< 0.0050	0.0053	0.0097
Total Nitrogen as N	mg/L	-	-	0.048	0.094	< 0.0500	0.0715	-	-	-
Bromide (Br) Chloride (Cl)	mg/L mg/L	- 600, MAC	1.8	1.1	<1.0	1.2	- 1	<0.050 1.2	0.84	<0.050 0.84
Fluoride (F)	mg/L	0.7-1.9 (d)	ND	ND	<0.1	<0.10	< 0.10	0.052	0.049	0.049
Nitrate (as N)	mg/L	32.8	ND	ND	< 0.01	< 0.010	0.012	0.0133	< 0.0050	< 0.0050
Nitrite (as N) Sulfate (SO4)	mg/L mg/L	0.06-0.6 (h) 128-429 (d)	ND 2.57	ND 4.25	<0.01 2.5	<0.01	<0.01	<0.0010 2.56	<0.0010 2.23	<0.0010 2.1
Total Organic Carbon	mg/L	+/- 20% of background	ND	ND	<0.5	< 0.50	0.89	-	-	-
BOD	mg/L	-	ND	ND	<4.0	<4.0	<4.0	<2.0	<2.0	<2.0
COD Total Metals	mg/L	-	-	-	-	-	-	<20	<20	<20
Aluminum (Al)-Total	mg/L	-	ND	0.0052	< 0.0050	< 0.0050	< 0.0050	< 0.0030	0.0033	0.0069
Antimony (Sb)-Total	mg/L	0.009	ND	ND	<0.00010	< 0.00010	< 0.00020	< 0.00010	<0.00010	<0.00010
Arsenic (As)-Total Barium (Ba)-Total	mg/L mg/L	0.005	0.00191 0.0219	0.00182 0.0198	0.00167 0.0217	0.00193 0.0238	0.00193 0.0213	0.00193 0.0224	0.00209 0.02480	0.00205 0.02350
Beryllium (Be)-Total	mg/L	0.00013	ND	ND	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Bismuth	mg/L	1.2	ND ND	ND ND	<0.00010	<0.00010	< 0.00010	<0.000050	<0.000050	<0.000050
Boron (B)-Total Cadmium (Cd)-Total	mg/L mg/L	1. <i>L</i> -	ND 0.000025	ND 0.000011	0.006 <0.00001	0.0115 <0.000010	0.0087 <0.000010	<0.010 <0.0000050	<0.010 <0.0000050	<0.010 0.0000614
Calcium (Ca)-Total	mg/L	<4 sensitive to acid input	26.2	26	24.8	27.1	28	27.9	26.7	26.0
Cessium (Cs) - Total Chromium (Cr)-Total	mg/L mg/L	0.001 (e)	- ND	- ND	<0.0005	<0.00050	0.00069	<0.000010 0.00032	<0.000010 0.00041	<0.000010 0.00035
Cobalt (Co)-Total	mg/L	0.001 (e) 0.11	ND ND	ND	< 0.0003	<0.00030	< 0.00010	< 0.00032	< 0.00041	< 0.00033
Copper (Cu)-Total	mg/L	0.0032-0.0396 (d,f)	0.00093	ND	< 0.0002	< 0.00020	< 0.00040	< 0.00050	< 0.00050	0.00072
Iron (Fe)-Total Lead (Pb)-Total	mg/L mg/L	1 0.011-0.402 (d,f)	ND ND	0.0171 ND	<0.010 <0.0001	<0.010 <0.00010	<0.010 <0.00020	<0.010 <0.000050	<0.010 <0.000050	<0.010 <0.00050
Lithium (Li)-Total	mg/L	- (u,1)	ND	ND	0.0001	0.0010	0.00118	0.00011	0.00011	0.00011
Magnesium (Mg)-Total	mg/L	-	2.25	0.0012	1.88	2.14	2.25	2.32	2.200	2.040
Manganese (Mn)-Total Mercury (Hg)-Total	mg/L mg/L	0.8-3.4 (d,f) 0.0001	ND ND	2.06 ND	0.00048 <0.00002	0.00038 <0.000020	0.00044 <0.000010	0.00077 <0.0000050	0.0013 <0.000050	0.0013 <0.0000050
Molybdenum (Mo)-Total	mg/L	2	ND	ND	0.00028	0.00031	0.00029	0.000283	0.000292	0.000295
Nickel (Ni)-Total	mg/L	0.025-0.15 (d,f)	ND	ND	< 0.0002	< 0.00020	< 0.00040	< 0.00050	< 0.00050	< 0.00050
Phosphorus - Total Potassium (K)-Total	mg/L mg/L	0.005-0.015 (lakes only)	0.886	0.783	<0.05 0.72	<0.050 0.83	<0.050 0.86	<0.050 0.819	<0.050 0.824	<0.050 1.110
Rubidium (Rb) -Total	mg/L	-	-	-	-	-	-	0.00036	0.00034	0.00061
Selenium (Se)-Total	mg/L	0.002	0.00013	ND	<0.00050	< 0.00050	<0.00050	0.000143	0.000126	0.000129
Silicon - Total Silver (Ag)-Total	mg/L mg/L	0.0001-0.003 (d)	4.58 ND	4.98 ND	4.9 <0.00005	5 0.000066	5 <0.000050	5.02 <0.000010	4.78 <0.000010	4.94 <0.000010
Sodium (Na)-Total	mg/L	=	1.89	1.88	1.71	1.92	2.01	1.91	2.15	2.04
Strontium - Total Sulfur - Total	mg/L mg/L	-	0.0992 ND	0.0946 ND	0.0912 <3.0	0.105 <3.0	0.0928 <3.0	0.0993 0.87	0.09970 0.67	0.10300 0.61
Tellurium - Total	mg/L	<u>-</u>	-	-	<0.00020	<0.00020	<0.00050	<0.00020	<0.00020	< 0.00020
Thallium (Tl)-Total	mg/L	0.0008	ND	ND	< 0.00002	< 0.000020	< 0.000020	< 0.000010	< 0.000010	< 0.000010
Thorium - Total Tin (Sn)-Total	mg/L mg/L	-	- ND	- ND	<0.00010 <0.00020	<0.00010 <0.00020	<0.00010 <0.00020	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010
Titanium (Ti)-Total	mg/L	-	ND	ND	< 0.0050	< 0.0050	< 0.0050	< 0.00030	< 0.00030	< 0.00030
Tungsten (W) - Total	mg/L	- 0.005	- 0.00011	- 0.00011	- 0.0000	- 0.000122	- 0.000104	< 0.00010	< 0.00010	< 0.00010
Uranium (U)-Total Vanadium (V)-Total	mg/L mg/L	0.0085	0.00011 ND	0.00011 ND	0.00009 <0.0010	0.000122 0.0012	0.000104 0.0011	0.000094 0.00095	0.000104 0.00126	0.000113 0.00112
Zinc (Zn)-Total	mg/L	0.033-0.34 (d,f)	ND	ND	< 0.0040	< 0.0040	< 0.0040	< 0.0030	< 0.0030	0.004
Zirconium - Total Dissolved Metals	mg/L	-	ND	ND	< 0.00010	< 0.00010	< 0.00010	<0.000060	<0.000060	<0.000060
Aluminum (Al)-Dissolved	mg/L	0.023-0.1 (b,c)	0.0445	ND	< 0.0050	< 0.0050	< 0.0050	< 0.0010	< 0.0010	0.0011
Antimony (Sb)-Dissolved	mg/L	-	ND	ND	< 0.00010	< 0.00010	< 0.00020	< 0.00010	< 0.00010	< 0.00010
Arsenic (As)-Dissolved Barium (Ba)-Dissolved	mg/L mg/L	-	0.00198 0.0221	0.00156 0.0189	0.00173 0.0203	0.00184 0.021	0.00198 0.0212	0.00186 0.0231	0.00194 0.02290	0.00211 0.02280
Beryllium (Be)-Dissolved	mg/L	-	ND	ND	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Bisumuth - Dissolved	mg/L	-	ND	ND	<0.00010	< 0.00010	< 0.00010	< 0.000050	<0.000050	< 0.000050
Boron (B)-Dissolved Cadmium (Cd)-Dissolved	mg/L mg/L	- 0.000027 - 0.00280 (d, f)	ND ND	ND 0.000007	<0.004 <0.00001	0.0056 <0.000010	0.0064 <0.000010	<0.010 0.0000273	<0.010 <0.0000050	<0.010 <0.000050
Calcium (Ca)-Dissolved	mg/L	-	26.0	24.9	24.7	24.1	27.4	27.6	26.700	26.200
Cessium (Cs) - Dissolved Chromium (Cr)-Dissolved	mg/L mg/L	-	- ND	ND ND	<0.0005	<0.00050	<0.00050	<0.000010 0.00032	<0.000010 0.0004	<0.000010 0.0003
Cobalt (Co)-Dissolved	mg/L mg/L	-	ND	ND	<0.0005	< 0.00010	<0.00030	< 0.00032	<0.0004	< 0.00010
Copper (Cu)-Dissolved	mg/L		0.00157	ND	< 0.0002	< 0.00020	< 0.00040	< 0.00020	<0.00020	< 0.00020
Iron (Fe)-Dissolved Lead (Pb)-Dissolved	mg/L mg/L	0.35	ND ND	ND ND	<0.010 <0.0001	<0.010 <0.00010	<0.010 <0.00020	<0.010 <0.000050	<0.010 <0.000050	<0.010 <0.00050
Lithium (Li)-Dissolved	mg/L	-	ND	0.00097	0.001	0.00102	0.00114	< 0.0010	0.001	0.001
Magnesium (Mg)-Dissolved	mg/L	-	2.30	1.92	1.86	1.9	2.28	2.21	2.070	2.170
Manganese (Mn)-Dissolved Mercury (Hg)-Dissolved	mg/L mg/L	<u>-</u>	ND ND	0.00041 ND	<0.00020 <0.00002	<0.00020	0.00031 <0.000010	<0.00010 <0.0000050	0.00028 <0.0000050	0.00069 <0.0000050
Molybdenum (Mo)-Dissolved	mg/L	-	ND	0.000282	0.00027	0.00028	0.00029	0.000284	0.00028	0.000283
Nickel (Ni)-Dissolved	mg/L	-	ND	ND	<0.0002	<0.00020	<0.00040	<0.00050	<0.00050	<0.00050
Phosphorus - Dissolved Potassium (K)-Dissolved	mg/L mg/L	-	0.899	0.77	<0.05 0.73	<0.050 0.71	<0.050 0.85	<0.050 0.893	<0.050 0.796	<0.050 0.838
Rubidium (Rb) -Dissolved	mg/L	-	-	-	-	-	-	0.00037	0.00032	0.00037
Selenium (Se)-Dissolved Silicon - Dissolved	mg/L mg/L	-	0.00015 4.49	0.000111 4.28	<0.00050 5	<0.00050 4.6	<0.00050 5.1	0.000114 4.67	0.000098 4.500	0.000115 4.780
Silver (Ag)-Dissolved	mg/L mg/L	<u>-</u>	4.49 ND	4.28 ND	< 0.00005	<0.000050	<0.000050	<0.000010	<0.000010	4./80 <0.000010
Sodium (Na)-Dissolved	mg/L	-	1.93	1.68	1.68	1.71	2.02	2.21	1.85	2.04
Strontium - Dissolved Sulfur- Dissolved	mg/L mg/L	-	0.0988 ND	0.0946 ND	0.0881 <3.0	0.0907 <3.0	0.0957 <3.0	0.106 0.59	0.09870 0.63	0.10200 0.71
Tellurium - Dissolved	mg/L mg/L		ND -	ND ND	<0.00020	<0.00020	<0.00050	<0.00020	<0.00020	<0.00020
Thallium (Tl)-Dissolved	mg/L	-	ND	ND	< 0.00002	< 0.000020	< 0.000020	< 0.000010	< 0.000010	< 0.000010
Thorium - Dissovled Tin (Sn)-Dissolved	mg/L mg/L	-	- ND	ND ND	<0.00010 <0.00020	<0.00010 <0.00020	<0.00010 <0.00020	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010
Titanium (Ti)-Dissolved	mg/L mg/L		ND ND	ND ND	< 0.0050	<0.0050	<0.00020	<0.00010	<0.00010	<0.00010
Tungsten (W) - Dissolved	mg/L	-	-	-	-	-	-	<0.00010	< 0.00010	< 0.00010
Uranium (U)-Dissolved	mg/L	-	0.00012 ND	ND 0.00116	0.00009 <0.0010	0.000109 <0.0010	0.0001 <0.0010	0.000104 0.00097	0.000102 0.00099	0.000108 0.001
Vanadium (V)-Dissolved	ma/I									
Vanadium (V)-Dissolved Zinc (Zn)-Dissolved	mg/L mg/L	-	ND	0.00110	<0.0010	<0.0010	<0.0040	0.0010	< 0.0010	< 0.0010

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
- (2) BC Contaminated Sites Regulation (CSR) for protection of aquatic life or drinking water, Schedule 3.2, last updated July 2018
 (3) All criteria limits for BCWQG Aquatic Life Guidelines based on Total Metal Concentration except Aluminum (Dissolved) and Cadmium (Dissolved)
 (4) BC MoE Water Quality Guidelines for Protection Wildlife
- (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 'C (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L. (c) Limit for dissolved metals, not total metals (d) Limit dependent upon hardness.

- (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromium VI in sample
- (f) Where hardness data was unavailable, 50 mg/L was assumed (g) Maximum value
- (h) Limit dependent upon chloride concentration
- (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows * Criteria exceeds detection limit MAC = Maximum Acceptable Concentration
- AO = Aesthetic Objective

BCWQG-AW BC Water Quality Guidelines for Protection of Aquatic Life

Table 16: Surface Water Quality Results Sampling Location SW-02 (

		BC MoE Guidelines BCWQG-AW (1)	29-Mar-19	29-Mar-19	29-Mar-19	25-Jun-19
Field	Units	BCWQG-AW (1)		duplicate	RPD	
Conductivity pH	uS/cm pH	-	96.2 7.6		-	123.3 8.0
Temperature	°C	<u>-</u> -	4.7		-	15.0
Dissolved Oxygen	mg/L	-	8.4		-	9.3
Flow Rate Analyte	m/s Units		0.09		-	
Conductivity	uS/cm	-	-	-	-	
Hardness (as CaCO3) pH	mg/L pH	6.5-9.0	79.3 8.10	79 8.1	0.19%	80.6 8.18
Total Suspended Solids	mg/L	25 mg/L (backgr. 25-250 mg/l)) (i)	-	-	-	•
Total Dissolved Solids Alkalinity, Total (as CaCO3)	mg/L	-	-	-	-	•
Ammonia, Total (as N)	mg/L mg/L	2.0-26.5 (a)	<0.0050	<0.0050	-	< 0.0050
Total Nitrogen as N	mg/L			-	-	0.050
Bromide (Br) Chloride (Cl)	mg/L mg/L	- 600, MAC	<0.050 0.88	<0.050 0.89	0.56%	<0.050 0.88
Fluoride (F)	mg/L	0.7-1.9 (d)	0.048	0.052	4.00%	0.049
Nitrate (as N) Nitrite (as N)	mg/L mg/L	32.8 0.06-0.6 (h)	0.0175 <0.0010	0.0168 <0.0010	2.04%	0.0116 <0.0010
Sulfate (SO4)	mg/L	128-429 (d)	2.24	2.21	0.67%	2.32
Total Organic Carbon	mg/L	+/- 20% of background			-	~2.0
BOD COD	mg/L mg/L	-	<2.0 <20	<2.0 <20	-	<2.0 <20
Total Metals						
Aluminum (Al)-Total Antimony (Sb)-Total	mg/L mg/L	0.009	<0.0030 <0.00010	<0.0030 <0.00010	-	<0.0030 <0.00010
Arsenic (As)-Total	mg/L	0.005	0.0010	0.0010	1.03%	0.00210
Barium (Ba)-Total	mg/L	1	0.02480	0.02220	5.53%	0.0222
Beryllium (Be)-Total Bismuth	mg/L mg/L	0.00013	<0.00010 <0.000050	<0.00010 <0.000050	-	<0.00010 <0.000050
Boron (B)-Total	mg/L	1.2	< 0.010	< 0.010	-	< 0.010
Cadmium (Cd)-Total Calcium (Ca)-Total	mg/L	<4 sensitive to acid input	<0.0000050 28.5	0.0000072 26.6	3.45%	0.0000151 26.3
Cessium (Cs) - Total	mg/L mg/L	~+ sensitive to acid input	<0.000010	<0.000010	3.45%	<0.000010
Chromium (Cr)-Total	mg/L	0.001 (e)	0.00035	0.00034	1.45%	0.00037
Cobalt (Co)-Total Copper (Cu)-Total	mg/L mg/L	0.11 0.0032-0.0396 (d,f)	<0.00010 <0.00050	<0.00010 <0.00050	-	<0.00010 <0.00050
Iron (Fe)-Total	mg/L	1	< 0.010	< 0.010	-	< 0.010
Lead (Pb)-Total Lithium (Li)-Total	mg/L mg/L	0.011-0.402 (d,f)	<0.000050 0.0011	<0.000050 0.0011	0.00%	<0.000050 0.0012
Magnesium (Mg)-Total	mg/L mg/L	- -	2.260	2.040	5.12%	2.01
Manganese (Mn)-Total	mg/L	0.8-3.4 (d,f)	0.0005	0.0005	0.99%	0.00043
Mercury (Hg)-Total Molybdenum (Mo)-Total	mg/L mg/L	0.0001	<0.0000050 0.000276	<0.0000050 0.000296	3.50%	<0.0000050 0.000271
Nickel (Ni)-Total	mg/L	0.025-0.15 (d,f)	<0.00050	< 0.00050	-	< 0.00050
Phosphorus - Total Potassium (K)-Total	mg/L	0.005-0.015 (lakes only)	<0.050 0.826	<0.050 0.786	2.48%	<0.050 0.822
Rubidium (Rb) -Total	mg/L mg/L	- -	0.00036	0.00036	0.00%	0.822
Selenium (Se)-Total	mg/L	0.002	0.000107	0.000112	2.28%	0.000107
Silicon - Total Silver (Ag)-Total	mg/L mg/L	0.0001-0.003 (d)	5.30 <0.000010	4.67 <0.000010	6.32%	5.03 <0.000010
Sodium (Na)-Total	mg/L	- ·	1.95	1.98	0.76%	1.86
Strontium - Total	mg/L	-	0.10400	0.10600 0.97	0.95%	0.0975
Sulfur - Total Tellurium - Total	mg/L mg/L	-	0.84 <0.00020	<0.00020	7.18%	0.71 <0.00020
Thallium (Tl)-Total	mg/L	0.0008	< 0.000010	<0.000010	-	< 0.000010
Thorium - Total Tin (Sn)-Total	mg/L mg/L	-	<0.00010 <0.00010	<0.00010 <0.00010	-	<0.00010 <0.00010
Titanium (Ti)-Total	mg/L	-	<0.00030	< 0.00030	-	< 0.00030
Tungsten (W) - Total	mg/L	- 0.005	<0.00010 0.0001	<0.00010 0.000106	2.91%	<0.00010 0.000108
Uranium (U)-Total Vanadium (V)-Total	mg/L mg/L	0.0085	0.0001	0.00118	2.91%	0.000108
Zinc (Zn)-Total	mg/L	0.033-0.34 (d,f)	< 0.0030	< 0.0030	-	< 0.0030
Zirconium - Total Dissolved Metals	mg/L	-	<0.000060	<0.000060	-	<0.00020
Aluminum (Al)-Dissolved	mg/L	0.023-0.1 (b,c)	< 0.0010	0.0012	-	0.0014
Antimony (Sb)-Dissolved	mg/L	-	<0.00010	< 0.00010	- 1.020/	< 0.00010
Arsenic (As)-Dissolved Barium (Ba)-Dissolved	mg/L mg/L	-	0.00199 0.02300	0.00195 0.02270	1.02% 0.66%	0.00196 0.0226
Beryllium (Be)-Dissolved	mg/L	-	< 0.00010	< 0.00010	-	< 0.00010
Bisumuth - Dissolved Boron (B)-Dissolved	mg/L mg/L	-	<0.000050 <0.010	<0.000050 <0.010	-	<0.000050 <0.010
Cadmium (Cd)-Dissolved	mg/L	0.000027 - 0.00280 (d, f)	< 0.0000050	< 0.0000050	-	< 0.0000050
Calcium (Ca)-Dissolved Cessium (Cs) - Dissolved	mg/L mg/L	-	28.300 <0.000010	28.200 <0.000010	0.18%	28.6 <0.000010
Chromium (Cr)-Dissolved Chromium (Cr)-Dissolved	mg/L mg/L	-	0.000010	0.00033	1.54%	0.00037
Cobalt (Co)-Dissolved	mg/L	-	<0.00010	<0.00010	-	<0.00010
Copper (Cu)-Dissolved Iron (Fe)-Dissolved	mg/L mg/L	0.35	<0.00020 <0.010	<0.00020 <0.010	-	<0.00020 <0.010
Lead (Pb)-Dissolved	mg/L	-	< 0.000050	< 0.000050	-	< 0.000050
Lithium (Li)-Dissolved Magnesium (Mg)-Dissolved	mg/L mg/L	-	0.0011 2.110	0.0011 2.070	0.00% 0.96%	0.0011 2.22
Magnesium (Mg)-Dissolved Manganese (Mn)-Dissolved	mg/L mg/L	-	0.00039	0.00050	12.36%	0.00028
Mercury (Hg)-Dissolved	mg/L	=	< 0.0000050	< 0.0000050	-	< 0.0000050
Molybdenum (Mo)-Dissolved Nickel (Ni)-Dissolved	mg/L mg/L	-	0.000269 <0.00050	0.000268 <0.00050	0.19%	0.000286 <0.00050
(mg/L	-	< 0.050	< 0.050	-	< 0.050
Phosphorus - Dissolved		-	0.820	0.809 0.00032	0.68% 4.48%	0.784 0.00032
Potassium (K)-Dissolved	mg/L mg/I		11 /11/11/25	0.00032	4.48%	0.00032
	mg/L mg/L mg/L	-	0.00035 0.000139	0.000162	7.64%	0.000127
Potassium (K)-Dissolved Rubidium (Rb) -Dissolved Selenium (Se)-Dissolved Silicon - Dissolved	mg/L mg/L mg/L	- -	0.000139 4.650	4.440	2.31%	4.70
Potassium (K)-Dissolved Rubidium (Rb) -Dissolved Selenium (Se)-Dissolved Silicon - Dissolved Silver (Ag)-Dissolved	mg/L mg/L mg/L mg/L	-	0.000139 4.650 <0.000010	4.440 <0.000010	2.31%	4.70 <0.000010
Potassium (K)-Dissolved Rubidium (Rb) -Dissolved Selenium (Se)-Dissolved Silicon - Dissolved	mg/L mg/L mg/L	- -	0.000139 4.650 <0.000010 1.94 0.10000	4.440 <0.000010 1.80 0.09460	2.31%	4.70 <0.000010 1.85 0.104
Potassium (K)-Dissolved Rubidium (Rb) -Dissolved Selenium (Se)-Dissolved Silicon - Dissolved Silver (Ag)-Dissolved Sodium (Na)-Dissolved Strontium - Dissolved Sulfur- Dissolved	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- - - - -	0.000139 4.650 <0.000010 1.94 0.10000 0.52	4.440 <0.000010 1.80 0.09460 <0.50	2.31% - 3.74% 2.77%	4.70 <0.000010 1.85 0.104 0.63
Potassium (K)-Dissolved Rubidium (Rb) -Dissolved Selenium (Se)-Dissolved Silicon - Dissolved Siliver (Ag)-Dissolved Sodium (Na)-Dissolved Strontium - Dissolved	mg/L mg/L mg/L mg/L mg/L mg/L mg/L		0.000139 4.650 <0.000010 1.94 0.10000	4.440 <0.000010 1.80 0.09460	2.31% - 3.74% 2.77%	4.70 <0.000010 1.85 0.104
Potassium (K)-Dissolved Rubidium (Rb) -Dissolved Selenium (Se)-Dissolved Silicon - Dissolved Silicon - Dissolved Silicon - Dissolved Sodium (Na)-Dissolved Sodium (Na)-Dissolved Strontium - Dissolved Sulfur- Dissolved Thallium (Tl)-Dissolved Thorium - Dissolved	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- - - - - - -	0.000139 4.650 <0.000010 1.94 0.10000 0.52 <0.00020 <0.000010	4.440 <0.000010 1.80 0.09460 <0.50 <0.00020 <0.000010	2.31% - 3.74% 2.77%	4.70 <0.000010 1.85 0.104 0.63 <0.00020 <0.000010
Potassium (K)-Dissolved Rubidium (Rb) -Dissolved Selenium (Se)-Dissolved Silicon - Dissolved Silicon - Dissolved Siliver (Ag)-Dissolved Sodium (Na)-Dissolved Strontium - Dissolved Sulfur- Dissolved Tellurium - Dissolved Thallium (Tl)-Dissolved Thorium - Dissolved Tin (Sn)-Dissolved	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- - - - - - -	0.000139 4.650 <0.000010 1.94 0.10000 0.52 <0.00020 <0.000010 <0.00010 <0.00010	4.440 <0.000010 1.80 0.09460 <0.50 <0.00020 <0.000010 <0.00010	2.31% - 3.74% 2.77% - - -	4.70 <0.000010 1.85 0.104 0.63 <0.00020 <0.000010 <0.00010
Potassium (K)-Dissolved Rubidium (Rb) -Dissolved Selenium (Se)-Dissolved Silicon - Dissolved Silicon - Dissolved Silicon - Dissolved Sodium (Na)-Dissolved Sodium (Na)-Dissolved Strontium - Dissolved Sulfur- Dissolved Thallium (Tl)-Dissolved Thorium - Dissolved	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- - - - - - -	0.000139 4.650 <0.000010 1.94 0.10000 0.52 <0.00020 <0.000010	4.440 <0.000010 1.80 0.09460 <0.50 <0.00020 <0.000010	2.31% - 3.74% 2.77%	4.70 <0.000010 1.85 0.104 0.63 <0.00020 <0.000010
Potassium (K)-Dissolved Rubidium (Rb) -Dissolved Selenium (Se)-Dissolved Selenium (Se)-Dissolved Silicon - Dissolved Silicon - Dissolved Silicon - Dissolved Silicon - Dissolved Sodium (Na)-Dissolved Strontium - Dissolved Strontium - Dissolved Tellurium - Dissolved Thallium (Tl)-Dissolved Thorium - Dissolved Tin (Sn)-Dissolved Titanium (Ti)-Dissolved Tungsten (W) - Dissolved Uranium (U)-Dissolved	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- - - - - - - - - - - - -	0.000139 4.650 <0.000010 1.94 0.10000 0.52 <0.00020 <0.00010 <0.00010 <0.00010 0.00030 <0.00010 0.00010 0.00010	4,440 <0.000010 1.80 0.09460 <0.50 <0.00020 <0.000010 <0.00010 <0.00010 <0.00030 <0.000000 0.00000000000000000	2.31% - 3.74% 2.77% 5.94%	4.70 <0.000010 1.85 0.104 0.63 <0.00020 <0.00010 <0.00010 <0.00010 <0.00030 <0.00030 <0.00010
Potassium (K)-Dissolved Rubidium (Rb) -Dissolved Selenium (Se)-Dissolved Silicon - Dissolved Silicon - Dissolved Siliver (Ag)-Dissolved Sodium (Na)-Dissolved Strontium - Dissolved Sulfur- Dissolved Tellurium - Dissolved Thallium (Tl)-Dissolved Tin (Sn)-Dissolved Titanium (Ti)-Dissolved Titanium (Ti)-Dissolved Tungsten (W) - Dissolved	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	- - - - - - - - - - -	0.000139 4.650 <0.000010 1.94 0.10000 0.52 <0.00020 <0.000010 <0.00010 <0.00010 <0.00030 <0.00030	4.440 <0.000010 1.80 0.09460 <0.50 <0.00020 <0.00010 <0.00010 <0.00010 <0.00030 <0.00010	2.31% - 3.74% 2.77%	4.70 <0.000010 1.85 0.104 0.63 <0.00020 <0.000010 <0.00010 <0.00010 <0.00030 <0.00010

- $(1)\ BC\ MoE\ Approved\ and\ Working\ Water\ Quality\ Guidelines,\ last\ updated\ March\ 2018$
- (2) BC Contaminated Sites Regulation (CSR) for protection of aquatic life or drinking water, Sci (3) All criteria limits for BCWQG Aquatic Life Guidelines based on Total Metal Concentration (4) BC MoE Water Quality Guidelines for Protection of Wildlife

- (4) BC MoE Water Quality Guidelines for Protection Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 'C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 (c) Limit for dissolved metals, not total metals
 (d) Limit dependent upon hardness.
 (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chrom (f) Where hardness data was unavailable, 50 mg/L was assumed
 (g) Maximum value
 (h) Limit dependent upon chloride concentration

- (h) Limit dependent upon chloride concentration
- (n) Limit dependent upon cnioride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of *Criteria exceeds detection limit

 MAC = Maximum Acceptable Concentration

 AO = Aesthetic Objective
- - BCWQG-AW BC Water Quality Guidelines for Protection of Aquatic Lij

Table 17: Surface Water Quality Results Sampling Location SW-03 (Lower Clearwater Lake)

	I	BC MoE Guidelines	22-Oct-12	02-Apr-13	06-Apr-17	05-Jul-17	26-Sep-17	08-Nov-17	12-Apr-18	12-Apr-18	12-Apr-18	17-Jul-18	19-Nov-18
		BCWQG-AW (1)	22-001-12	02-11p1-15	00-21p1-17	03-041-17	20-5ср-17	00-1107-17				17-541-10	19-1101-10
Field Conductivity	Units uS/cm	<u>.</u>	-	_	140	141	111	92	Sample 91	Duplicate -	RPD -	126	95
pН	pН	-	-	-	7.6	7.5	8.2	8.0	7.6	-	-	7.9	7.6
Temperature Dissolved Oxygen	°C mg/L	- -	-	-	7	14.1	11 14.2	4.2 12	5.2 16.3	-	-	15.4	5.3 5.4
Depth to Water	m						12		10.5				5
Flow Rate Analyte	m/s Units												
Conductivity	uS/cm	-	149	151	145	161	158	-	-	-	-	-	-
Hardness (as CaCO3)	mg/L pH	6,5-9,0	72.8 7.48	73.3 7.9	68 8	75.4 8.1	73.1 7.9	78.7 8.2	70.2 8.2	71.4 8.3	0.85%	73.9 8.2	72.4 8.2
Total Suspended Solids	mg/L	25 mg/L (backgr. 25-250 mg/l)) (i)	-	ND	1.1	1.8	<1.0	-	- 0.2	- 0.3	-	- 0.2	- 0.2
Total Dissolved Solids	mg/L	-	71	104	82	78	91	-	-	-	-	-	-
Alkalinity, Total (as CaCO3) Ammonia, Total (as N)	mg/L mg/L	2.0-26.5 (a)	- ND	75.2 ND	71 <0.03	78 <0.03	76 <0.03	< 0.0050	0.0063	0.0054	7.69%	<0.0050	< 0.0050
Total Nitrogen as N	mg/L	-	-	0.049	< 0.0200	0.121	< 0.0500	-	-	-	-	-	-
Bromide (Br) Chloride (Cl)	mg/L mg/L	- 600, MAC	1.7	1.3	1.1	1.4	1.1	<0.050 0.97	<0.050 0.86	<0.050 0.88	1.15%	0.87	<0.050 0.90
Fluoride (F)	mg/L	0.7-1.9 (d)	ND	ND	< 0.1	< 0.10	< 0.10	0.05	0.047	0.048	1.05%	0.047	0.047
Nitrate (as N) Nitrite (as N)	mg/L mg/L	32.8 0.06-0.6 (h)	0.036 ND	0.032 ND	<0.01 <0.01	<0.010 <0.01	0.012 <0.01	0.0164 <0.0010	0.0089 <0.0010	0.0081 <0.0010	4.71%	<0.0050 <0.0010	0.0069 <0.0010
Sulfate (SO4)	mg/L	128-429 (d)	2.63	3.38	2.6	2.8	2.4	2.5	2.21	2.22	0.23%	2.25	2.12
Total Organic Carbon BOD	mg/L mg/L	+/- 20% of background	1.09 ND	ND ND	<0.50 <4.0	<0.50 <4.0	0.65 <4.0	<2.0	<0.50 <2.0	<0.50 <2.0	-	2.5	<2.0
COD	mg/L	-	-	-	-	-	-	<20	<20	<20	-	<20	<20
Total Metals Aluminum (Al)-Total	mg/L	_	0.0032	0.0043	0.0056	0.0146	<0.0050	<0.0030	0.0051	0.0037	15.91%	0.0040	0.0039
Antimony (Sb)-Total	mg/L	0.009	ND	0.0043 ND	< 0.00010	0.0001	<0.0030	< 0.0030	< 0.00010	< 0.00010	13.9170	< 0.00010	< 0.00010
Arsenic (As)-Total	mg/L	0.005	0.00179	0.00185	0.00155	0.00186	0.00195	0.00184	0.00165	0.00169	1.20%	0.00196	0.00181
Barium (Ba)-Total Beryllium (Be)-Total	mg/L mg/L	0.00013	0.0219 ND	0.0225 ND	0.0187 <0.00010	0.0218 <0.00010	0.0215 <0.00010	0.0215 <0.00010	0.01990 <0.00010	0.01910 <0.00010	2.05%	0.02110 <0.00010	0.02160 <0.00010
Bismuth - Total	mg/L	-	ND	ND	< 0.00010	< 0.00010	< 0.00010	< 0.000050	< 0.000050	< 0.000050	-	< 0.000050	< 0.000050
Boron (B)-Total Cadmium (Cd)-Total	mg/L mg/L	1.2	ND ND	ND ND	0.007 <0.00001	0.0072 <0.000010	0.0083 <0.000010	<0.010 <0.000050	<0.010 <0.000050	<0.010 <0.0000050	-	<0.010 <0.0000050	<0.010 <0.000050
Calcium (Ca)-Total	mg/L	<4 sensitive to acid input	25.5	26.7	24.2	26.7	30.3	27.5	23.8	24.2	0.83%	26.2	24.8
Cesium (Cs) - Total Chromium (Cr)-Total	mg/L mg/L	0.001 (e)	- ND	- ND	<0.0005	<0.00050	0.00066	<0.000010 0.00034	<0.000010 0.00045	<0.000010 0.00044	1.12%	<0.000010 0.00044	<0.000010 0.0003
Cobalt (Co)-Total	mg/L	0.11	ND	ND	< 0.00005	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	-	< 0.00010	< 0.00010
Copper (Cu)-Total Iron (Fe)-Total	mg/L	0.0032-0.0396 (d,f)	0.00074 0.0069	ND 0.0091	<0.0002 0.011	<0.00020 0.023	<0.00040 <0.010	<0.00050 <0.010	<0.00050 <0.010	<0.00050 <0.010	-	<0.00050 <0.010	<0.00050 <0.010
Lead (Pb)-Total	mg/L mg/L	0.011-0.402 (d,f)	ND	ND	< 0.0001	< 0.00010	< 0.00020	< 0.000050	< 0.000050	< 0.000050	-	< 0.000050	< 0.000050
Lithium (Li)-Total	mg/L	-	ND 2.21	ND 2.15	0.001 1.85	0.00122 2.09	0.00125 2.4	<0.0010 2.34	0.0012 1.840	0.0013 1.830	4.00% 0.27%	0.0011 2.110	0.0011 2.010
Magnesium (Mg)-Total Manganese (Mn)-Total	mg/L mg/L	0.8-3.4 (d,f)	ND	ND ND	0.00075	0.00113	0.00105	0.00051	0.0007	0.0006	2.29%	0.0010	0.0007
Mercury (Hg)-Total	mg/L	0.0001	ND	ND	<0.00002	<0.000020	<0.000010	<0.0000050	<0.0000050	<0.0000050	-	<0.0000050	<0.0000050
Molybdenum (Mo)-Total Nickel (Ni)-Total	mg/L mg/L	0.025-0.15 (d,f)	ND ND	ND ND	0.00029 <0.0002	0.00032 <0.00020	0.00032 <0.00040	0.000275 <0.00050	0.000283 <0.00050	0.000285 <0.00050	0.35%	0.000287 <0.00050	0.00031 <0.00050
Phosphorus - Total	mg/L	0.005-0.015 (lakes only)	-	-	< 0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	-	< 0.050	< 0.050
Potassium (K)-Total Rubidium (Rb) - Total	mg/L mg/L	- - -	0.880	0.814 ND	0.71	0.84	0.93	0.813 0.00033	0.724 0.00033	0.716 0.00031	0.56% 3.13%	0.800 0.00029	0.824 0.00031
Selenium (Se)-Total	mg/L	0.002	0.00013	ND	< 0.00050	< 0.00050	< 0.00050	0.000133	0.000136	0.000068	33.33%	0.000095	0.000091
Silicon - Total Silver (Ag)-Total	mg/L mg/L	- 0.0001-0.003 (d)	4.70 ND	5.13 ND	4.8 <0.00005	5 <0.000050	5.2 <0.000050	5.07 <0.000010	4.64 <0.000010	4.67 <0.000010	0.32%	4.60 <0.000010	4.96 <0.000010
Sodium (Na)-Total	mg/L	-	1.91	1.89	1.73	2.01	2.23	1.95	1.73	1.67	1.76%	1.89	1.86
Strontium - Total Sulfur - Total	mg/L mg/L	- - -	0.0961 ND	0.0983 ND	0.0894 <3.0	0.101 <3.0	0.1 <3.0	0.0962 0.87	0.09330 1.07	0.09330 0.88	0.00% 9.74%	0.09780 0.87	0.10300 0.76
Tellurium - Total	mg/L	-	-	-	< 0.00020	< 0.00020	< 0.00050	< 0.00020	< 0.00020	< 0.00020	-	< 0.00020	< 0.00020
Thallium (Tl)-Total Thorium - Total	mg/L mg/L	0.0008	ND -	ND -	<0.00002 <0.00010	<0.000020 <0.00010	<0.000020 <0.00010	<0.000010 <0.00010	<0.000010 <0.00010	<0.000010 <0.00010	-	<0.000010 <0.00010	<0.000010 <0.00010
Tin (Sn)-Total	mg/L	-	ND	ND	< 0.00020	< 0.00020	< 0.00020	< 0.00010	< 0.00010	< 0.00010	-	< 0.00010	< 0.00010
Titanium (Ti)-Total Tungsten (W) - Total	mg/L mg/L	-	ND -	ND -	<0.0050	<0.0050	<0.0050	<0.00030 <0.00010	<0.00030 <0.00010	<0.00030 <0.00010	-	<0.00030 <0.00010	<0.00030 <0.00010
Uranium (U)-Total	mg/L	0.0085	0.00011	ND	0.0001	0.000128	0.000113	0.000099	0.00010	0.00010	2.75%	0.00010	0.00010
Vanadium (V)-Total Zinc (Zn)-Total	mg/L	- 0.033-0.34 (d,f)	ND ND	ND ND	<0.0010 <0.0040	0.0012 <0.0040	0.0011 0.0046	0.00092 <0.0030	0.00104 <0.0030	0.001 <0.0030	1.96%	0.00125 <0.0030	0.00103 <0.0030
Zirconium - Total	mg/L mg/L	0.033-0.34 (d,1) -	ND ND	ND ND	< 0.0040	0.00058	< 0.0046	<0.00000	<0.000060	<0.000060	-	0.000077	<0.00000
Dissolved Metals	/T	0.022.0.1.4	ND	NID.	-0.0050	-0.0050	-0.0050	-0.0010	0.0024	0.0022	4.250/	0.002	0.0022
Aluminum (Al)-Dissolved Antimony (Sb)-Dissolved	mg/L mg/L	0.023-0.1 (b,c)	ND ND	ND ND	<0.0050 <0.00010	<0.0050 <0.00010	<0.0050 <0.00020	<0.0010 <0.00010	0.0024 <0.00010	0.0022 <0.00010	4.35%	0.002 <0.00010	0.0022 <0.00010
Arsenic (As)-Dissolved	mg/L	-	0.00185	0.00159	0.00159	0.00174	0.00174	0.00182	0.00167	0.00173	1.76%	0.00188	0.00190
Barium (Ba)-Dissolved Beryllium (Be)-Dissolved	mg/L mg/L		0.0215 ND	0.0208 ND	0.018 <0.00010	0.0197 <0.00010	0.0195 <0.00010	0.0228 <0.00010	0.02010 <0.00010	0.02050 <0.00010	0.99%	0.02050 <0.00010	0.02060 <0.00010
Bisumuth - Dissolved	mg/L	-	ND	ND	< 0.00010	< 0.00010	< 0.00010	< 0.000050	< 0.000050	< 0.000050	-	< 0.000050	< 0.000050
Boron (B)-Dissolved Cadmium (Cd)-Dissolved	mg/L mg/L	- 0.000027 - 0.00280 (d, f)	ND ND	ND ND	<0.004 <0.00001	<0.0050 <0.000010	0.0058 <0.000010	<0.010 <0.000050	<0.010 <0.000050	<0.010 <0.0000050	-	<0.010 <0.0000050	0.011 <0.0000050
Calcium (Ca)-Dissolved	mg/L	- ` ` ` ` `	24.9	24.1	23.4	23.8	25.7	28.0	24.900	25.400	0.99%	26.200	25.700
Cesium (Cs) - Dissolved Chromium (Cr)-Dissolved	mg/L mg/L	-	- ND	- ND	<0.0005	0.00062	<0.00050	<0.000010 0.00028	<0.000010 0.00031	<0.000010 0.00031	0.00%	<0.000010 0.0004	<0.000010 0.00034
Cobalt (Co)-Dissolved	mg/L	-	ND	ND	< 0.00005	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	-	< 0.00010	< 0.00010
Copper (Cu)-Dissolved Iron (Fe)-Dissolved	mg/L mg/L	0.35	0.00083 0.0060	0.00073 ND	<0.0002 <0.010	<0.00020 <0.010	<0.00040 <0.010	<0.00020 <0.010	<0.00020 <0.010	<0.00020 <0.010	-	<0.00020 <0.010	<0.00020 <0.010
Lead (Pb)-Dissolved	mg/L	-	ND	0.000395	< 0.0001	< 0.00010	< 0.00020	< 0.000050	< 0.000050	< 0.000050	-	< 0.000050	< 0.000050
Lithium (Li)-Dissolved Magnesium (Mg)-Dissolved	mg/L mg/L	-	ND 2.22	0.00102 1.92	0.001 1.82	0.00104 1.87	0.00107 2.15	<0.0010 2.15	0.001 1.950	0.001 1.930	0.00% 0.52%	<0.0010 2.030	0.0011 2.030
Manganese (Mn)-Dissolved	mg/L mg/L	-	ND	0.00014	0.00026	0.00022	0.00034	< 0.00010	0.00053	0.00052	0.52%	0.00054	0.00066
Mercury (Hg)-Dissolved	mg/L	-	ND ND	ND 0.000282	<0.00002 0.0003	0.00031	<0.000010 0.00027	<0.0000050 0.000303	<0.0000050 0.000296	<0.0000050 0.000282	2.42%	<0.0000050 0.000273	<0.0000050 0.000301
Molybdenum (Mo)-Dissolved Nickel (Ni)-Dissolved	mg/L mg/L	-	ND ND	0.000282 ND	<0.0003	<0.00031	<0.00027	<0.000303	<0.000296	<0.000282 <0.00050	2.42%	<0.000273	<0.000301
Phosphorus - Dissolved	mg/L	-	- 0.975	- 0.770	< 0.05	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	- 0.509/	< 0.050	<0.050
Potassium (K)-Dissolved Rubidium (Rb) - Dissolved	mg/L mg/L	-	0.875	0.770	0.7	0.72	0.82	0.798 0.00028	0.765 0.00027	0.756 0.00035	0.59% 12.90%	0.790 0.00029	0.792 0.00028
Selenium (Se)-Dissolved	mg/L	-	0.00014	0.000111	< 0.00050	< 0.00050	< 0.00050	0.000134	0.000127	0.000111	6.72%	0.00015	0.000114
Silicon - Dissolved Silver (Ag)-Dissolved	mg/L mg/L	-	4.58 ND	4.28 ND	4.8 <0.00005	4.6 <0.000050	4.9 <0.000050	4.55 <0.000010	4.680 <0.000010	4.630 <0.000010	0.54%	4.630 <0.000010	4.580 <0.000010
Sodium (Na)-Dissolved	mg/L	-	1.92	1.68	1.69	1.79	2	2.06	1.74	1.76	0.57%	1.87	1.96
Strontium - Dissolved Sulfur- Dissolved	mg/L mg/L	-	0.0950 ND	0.0946 ND	0.0864 <3.0	0.0896 <3.0	0.0922 <3.0	0.102 0.54	0.09360 0.84	0.09480 0.78	0.64% 3.70%	0.09770 0.62	0.10200 0.84
Tellurium - Dissolved	mg/L mg/L	-	-	-	< 0.00020	< 0.00020	< 0.00050	< 0.00020	< 0.00020	< 0.00020	3./0%	< 0.00020	< 0.00020
Thallium (Tl)-Dissolved	mg/L	-	ND	ND -	<0.00002 <0.00010	<0.000020 <0.00010	<0.000020 <0.00010	<0.000010 <0.00010	<0.000010 <0.00010	<0.000010 <0.00010	-	<0.000010 <0.00010	<0.000010 <0.00010
Thorium - Dissolved Tin (Sn)-Dissolved	mg/L mg/L	-	- ND	- ND	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	-	<0.00010	<0.00010
Titanium (Ti)-Dissolved	mg/L	-	ND	ND	< 0.00012	< 0.0050	< 0.0050	< 0.00030	< 0.00030	< 0.00030	-	< 0.00030	< 0.00030
Tungsten (W) - Dissovled Uranium (U)-Dissolved	mg/L mg/L	-	0.00011	0.000108	<0.00013	0.000117	0.000099	<0.00010 0.000111	<0.00010 0.000107	<0.00010 0.000105	0.94%	<0.00010 0.000103	<0.00010 0.00011
Vanadium (V)-Dissolved	mg/L	-	ND	0.00116	< 0.00014	< 0.0010	< 0.0010	0.00092	0.00094	0.00095	0.53%	0.00096	0.00091
Zinc (Zn)-Dissolved Zirconium - Dissolved	mg/L mg/L	-	ND ND	0.0016 ND	<0.00015 <0.00016	<0.0040 <0.00010	<0.0040 <0.00010	<0.0010 <0.00060	<0.0010 <0.00060	<0.0010 <0.00060	-	<0.0010 <0.000060	<0.0010 <0.000060
Zircomum - Dissolved	mg/L		ND	ND	~v.uuu16	~v.v0010	~v.00010	~U.UUUU6U	~v.vuuubU	~0.000000		~v.vvuubU	~v.vuuu00

- BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 BC Contaminated Sites Regulation (CSR) for protection of aquatic life or drinking water, Schedule 3.2, last updated July 2018
 All criteria limits for BCWQG Aquatic Life Guidelines based on Total Metal Concentration except Aluminum (Dissolved) and Cadmium (Dissolved)
- (4) BC MoE Water Quality Guidelines for Protection Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 'C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
- (c) Limit for dissolved metals, not total metals
- (d) Limit dependent upon hardness.

 (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromium VI in sample (f) Where hardness data was unavailable, 50 mg/L was assumed
- (g) Maximum value
- (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows
- * Criteria exceeds detection limit
- MAC = Maximum Acceptable Concentration AO = Aesthetic Objective
 - BCWQG-AW BC Water Quality Guidelines for Protection of Aquatic Life

Table 17: Surface Water Quality Results Sampling Location SW

		BC MoE Guidelines BCWQG-AW (1)	29-Mar-19	25-Jun-19
Field Conductivity	Units uS/cm		81	122
рН	pH	-	7.7	8.1
Temperature	°C	-	5 11.2	15.5 10.9
Dissolved Oxygen Depth to Water	mg/L m	-	11.2	-
Flow Rate	m/s		0.08	
Analyte Conductivity	Units uS/cm	-		
Hardness (as CaCO3)	mg/L	-	67.1	79.6
pH Total Suspended Solids	pH mg/L	6.5-9.0 25 mg/L (backgr. 25-250 mg/l)) (i)	8.0	8.2
Total Dissolved Solids	mg/L		-	
Alkalinity, Total (as CaCO3) Ammonia, Total (as N)	mg/L mg/L	2.0-26.5 (a)	<0.0050	0.0054
Total Nitrogen as N	mg/L	2.0-20.3 (a)	-	-
Bromide (Br)	mg/L	- 600 MAC	<0.050	< 0.050
Chloride (Cl) Fluoride (F)	mg/L mg/L	600, MAC 0.7-1.9 (d)	0.85 0.045	1.11 0.061
Nitrate (as N)	mg/L	32.8	0.012	0.0063
Nitrite (as N) Sulfate (SO4)	mg/L mg/L	0.06-0.6 (h) 128-429 (d)	<0.0010 2.04	<0.0010 2.36
Total Organic Carbon	mg/L	+/- 20% of background	-	-
BOD COD	mg/L mg/L	-	<2.0 <20	<2.0 <20
Total Metals	mg/L	-	~20	<u> </u>
Aluminum (Al)-Total	mg/L	-	0.0098	0.0048
Antimony (Sb)-Total Arsenic (As)-Total	mg/L mg/L	0.009 0.005	<0.00010 0.00160	<0.00010 0.00199
Barium (Ba)-Total	mg/L	1	0.01970	0.0191
Beryllium (Be)-Total Bismuth - Total	mg/L mg/L	0.00013	<0.00010 <0.000050	<0.00010 <0.000050
Boron (B)-Total	mg/L	1.2	< 0.010	< 0.010
Cadmium (Cd)-Total	mg/L	A consitive to:1:	0.0000065	<0.0000050
Calcium (Ca)-Total Cesium (Cs) - Total	mg/L mg/L	<4 sensitive to acid input	23.8 <0.000010	26.0 <0.000010
Chromium (Cr)-Total	mg/L	0.001 (e)	0.00031	0.00039
Cobalt (Co)-Total Copper (Cu)-Total	mg/L mg/L	0.11 0.0032-0.0396 (d,f)	<0.00010 <0.00050	<0.00010 <0.00050
Iron (Fe)-Total	mg/L	1	0.015	< 0.010
Lead (Pb)-Total Lithium (Li)-Total	mg/L mg/L	0.011-0.402 (d,f)	<0.000050 <0.0010	<0.000050 0.0012
Magnesium (Mg)-Total	mg/L	-	1.910	1.99
Manganese (Mn)-Total	mg/L	0.8-3.4 (d,f)	0.0016 <0.000050	0.0011 <0.000050
Mercury (Hg)-Total Molybdenum (Mo)-Total	mg/L mg/L	0.0001	0.000057	0.000302
Nickel (Ni)-Total	mg/L	0.025-0.15 (d,f)	< 0.00050	<0.00050
Phosphorus - Total Potassium (K)-Total	mg/L mg/L	0.005-0.015 (lakes only)	<0.050 0.700	<0.050 0.806
Rubidium (Rb) - Total	mg/L	-	0.00029	0.00031
Selenium (Se)-Total Silicon - Total	mg/L mg/L	0.002	0.00012 4.51	0.000143 5.12
Silver (Ag)-Total	mg/L	0.0001-0.003 (d)	< 0.000010	< 0.000010
Sodium (Na)-Total Strontium - Total	mg/L	-	1.77	1.88
Sulfur - Total	mg/L mg/L	<u> </u>	0.08840 0.7	0.0983 0.77
Tellurium - Total	mg/L	-	< 0.00020	< 0.00020
Thallium (Tl)-Total Thorium - Total	mg/L mg/L	0.0008	<0.000010 <0.00010	<0.000010 <0.00010
Tin (Sn)-Total	mg/L	-	< 0.00010	< 0.00010
Titanium (Ti)-Total Tungsten (W) - Total	mg/L mg/L	<u>-</u>	<0.00030 <0.00010	<0.00030 <0.00010
Uranium (U)-Total	mg/L	0.0085	0.000094	0.00010
Vanadium (V)-Total	mg/L	0.022.0.24.(4.6)	0.00102 <0.0030	0.00109 <0.0030
Zinc (Zn)-Total Zirconium - Total	mg/L mg/L	0.033-0.34 (d,f)	<0.00000	<0.0030
Dissolved Metals				
Aluminum (Al)-Dissolved Antimony (Sb)-Dissolved	mg/L mg/L	0.023-0.1 (b,c)	0.0059 <0.00010	0.0021 <0.00010
Arsenic (As)-Dissolved	mg/L	-	0.00164	0.00188
Barium (Ba)-Dissolved Beryllium (Be)-Dissolved	mg/L mg/L	-	0.01910 <0.00010	0.0200 <0.00010
Bisumuth - Dissolved	mg/L mg/L	<u>-</u>	< 0.000050	< 0.000050
Boron (B)-Dissolved	mg/L	0.000007 0.00000 (1.0	<0.010	<0.010
Cadmium (Cd)-Dissolved Calcium (Ca)-Dissolved	mg/L mg/L	0.000027 - 0.00280 (d, f) -	<0.0000050 23.800	<0.0000050 28.2
Cesium (Cs) - Dissolved	mg/L	-	< 0.000010	< 0.000010
Chromium (Cr)-Dissolved Cobalt (Co)-Dissolved	mg/L mg/L	-	0.00028 <0.00010	0.00036 <0.00010
Copper (Cu)-Dissolved	mg/L	-	< 0.00020	< 0.00020
Iron (Fe)-Dissolved Lead (Pb)-Dissolved	mg/L mg/L	0.35	0.012 <0.000050	<0.010 <0.000050
Lithium (Li)-Dissolved	mg/L mg/L	-	<0.000050	0.000030
Magnesium (Mg)-Dissolved	mg/L	-	1.870	2.21
Manganese (Mn)-Dissolved Mercury (Hg)-Dissolved	mg/L mg/L	-	0.00093 <0.0000050	0.0007 <0.0000050
Molybdenum (Mo)-Dissolved	mg/L	-	0.000258	0.000273
Nickel (Ni)-Dissolved Phosphorus - Dissolved	mg/L mg/L	-	<0.00050 <0.050	<0.00050 <0.050
Potassium (K)-Dissolved	mg/L	-	0.716	0.813
Rubidium (Rb) - Dissolved Selenium (Se)-Dissolved	mg/L mg/L	-	0.00027 0.000118	0.00033 0.000137
Selenium (Se)-Dissolved Silicon - Dissolved	mg/L mg/L	-	0.000118 4.120	0.000137 4.68
Silver (Ag)-Dissolved	mg/L	-	< 0.000010	< 0.000010
Sodium (Na)-Dissolved Strontium - Dissolved	mg/L mg/L	-	1.74 0.08710	1.99 0.0955
Sulfur- Dissolved	mg/L	-	< 0.50	0.65
Tellurium - Dissolved Thallium (Tl)-Dissolved	mg/L mg/L	-	<0.00020 <0.000010	<0.00020 <0.000010
Thorium - Dissolved	mg/L mg/L		<0.00010	<0.00010
Tin (Sn)-Dissolved	mg/L	-	< 0.00010	< 0.00010
Titanium (Ti)-Dissolved Tungsten (W) - Dissovled	mg/L mg/L	-	<0.00030 <0.00010	<0.00030 <0.00010
Uranium (U)-Dissolved	mg/L	-	0.000097	0.0001
Vanadium (V)-Dissolved	mg/L	•	0.00089 <0.0010	0.00106
Zinc (Zn)-Dissolved	mg/L	-	<0.0010	< 0.0010

- BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 BC Contaminated Sites Regulation (CSR) for protection of aquatic life or drinking wa
 All criteria limits for BCWQG Aquatic Life Guidelines based on Total Metal Concent
- (4) BC MoE Water Quality Guidelines for Protection of Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 'C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L. (c) Limit for dissolved metals, not total metals
- (d) Limit dependent upon hardness. (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% (f) Where hardness data was unavailable, 50 mg/L was assumed
- (g) Maximum value
- (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Ch.
 * Criteria exceeds detection limit
- MAC = Maximum Acceptable Concentration AO = Aesthetic Objective

BCWQG-AW

BC Water Quality Guidelines for Protection of Aqu

Table 18: Surface Water Quality Results Sampling Location SW-04 (Creek from Onion Lake at FSR)

		BC MoE Guidelines	05-Jul-17	26-Sep-17	08-Nov-17	12-Apr-18	17-Jul-18	19-Nov-18	29-Mar-19	25-Jun-19
Field	Units	BCWQG-AW (1)								
Conductivity	uS/cm	-	97	70	44	56	85	50	45	70
pH T	pH °C	-	6.5 11.8	7.6 10	7.8 2.3	7.5 2.5	7.2 16.8	7.8 4.4	7.3 1.5	6.8 11.1
Temperature Dissolved Oxygen	mg/L	-	9.41	14.1	13.7	13.4	1.9	10.8	13.2	9.8
Depth to Water	m									-
Flow Rate Analyte	m/s Units								0.2	
Conductivity	uS/cm	-	105	104	-	-	-	-		
Hardness (as CaCO3)	mg/L	-	42.3	42.3	28.1	26.4	39.4	27.7	25.5	31.8
pH Total Suspended Solids	pH mg/L	6.5-9.0 25 mg/L (backgr. 25-250 mg/l)) (i)	7.5 <1.0	7.6 <1.0	7.9	7.7	7.9	7.8	7.5	7.7
Total Dissolved Solids	mg/L	25 Hig/L (backgi: 25-250 Hig/l)) (1)	53	76	-	_	-	_	_	
Alkalinity, Total (as CaCO3)	mg/L	-	42	40	-	-	-	-	-	
Ammonia, Total (as N)	mg/L	2.0-26.5 (a)	< 0.03	< 0.03	< 0.0050	0.0058	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Total Nitrogen as N Bromide (Br)	mg/L mg/L	-	<0.0500	0.066	<0.050	<0.050	-	<0.050	<0.050	< 0.050
Chloride (Cl)	mg/L	600, MAC	6.1	6.1	4.13	13.8	10.8	7.02	9.61	11.0
Fluoride (F)	mg/L	0.7-1.9 (d) 32.8	<0.10 <0.01	< 0.10	0.038	0.035	0.039 0.0842	0.038 <0.0050	0.037	0.053 0.0158
Nitrate (as N) Nitrite (as N)	mg/L mg/L	32.8 0.06-0.6 (h)	<0.01	<0.01 <0.01	<0.0050 <0.0010	0.0054 <0.0010	< 0.0010	<0.0050	0.024 0.0015	< 0.0010
Sulfate (SO4)	mg/L	128-429 (d)	1.7	1.4	1.22	0.87	< 0.30	0.9	0.87	0.94
Total Organic Carbon BOD	mg/L	+/- 20% of background	<0.50 <4.0	1.53	<2.0	1.94 <2.0	<2.0	<2.0	<2.0	<2.0
COD	mg/L mg/L	-	- 4.0	<4.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Total Metals										
Aluminum (Al)-Total	mg/L	- 0.000	0.0061	0.0166	0.0140	0.0353	0.3660	0.0257	0.0331 <0.00010	0.0159
Antimony (Sb)-Total Arsenic (As)-Total	mg/L mg/L	0.009 0.005	<0.00010 0.00184	<0.00020 0.00192	<0.00010 0.00135	<0.00010 0.00104	<0.00010 0.00461	<0.00010 0.00133	<0.00010 0.00103	<0.00010 0.00163
Barium (Ba)-Total	mg/L	1	0.0121	0.0129	0.00997	0.01060	0.02680	0.01040	0.01090	0.0138
Beryllium (Be)-Total Bismuth	mg/L mg/L	0.00013	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050
Boron (B)-Total	mg/L mg/L	1.2	<0.00010	<0.00010 0.0117	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050
Cadmium (Cd)-Total	mg/L	-	< 0.000010	< 0.000010	< 0.0000050	< 0.0000050	0.0000151	< 0.0000050	< 0.0000050	< 0.0000050
Calcium (Ca)-Total	mg/L	<4 sensitive to acid input	12.6	15.1	11.3	8.4	14.8	10.0	8.5	11.6
Cesium (Cs) - Total Chromium (Cr)-Total	mg/L mg/L	0.001 (e)	<0.00050	0.00053	<0.000010 0.00015	<0.000010 0.00018	0.000022 0.00073	<0.000010 0.00019	<0.000010 0.00014	<0.000010 <0.00010
Cobalt (Co)-Total	mg/L	0.11	< 0.00010	< 0.00010	< 0.00010	< 0.00010	0.00037	< 0.00010	< 0.00010	< 0.00010
Copper (Cu)-Total	mg/L	0.0032-0.0396 (d,f)	<0.00020	< 0.00040	<0.00050 0.025	<0.00050	0.00073	<0.00050	<0.00050	<0.00050 0.049
Iron (Fe)-Total Lead (Pb)-Total	mg/L mg/L	0.011-0.402 (d,f)	<0.010 <0.00010	0.064 <0.00020	<0.00050	0.055 <0.000050	0.795 0.000325	0.068 <0.000050	0.056 <0.000050	<0.00050
Lithium (Li)-Total	mg/L	0.011-0.402 (d,1)	0.00039	0.00047	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010
Magnesium (Mg)-Total	mg/L	-	0.934	1.12	0.853	0.714	1.210	0.856	0.720	0.912
Manganese (Mn)-Total Mercury (Hg)-Total	mg/L mg/L	0.8-3.4 (d,f) 0.0001	0.00109	0.0154 <0.000010	0.00606 <0.0000050	0.0094 <0.0000050	0.2440 <0.0000050	0.0174 <0.0000050	0.0109 <0.0000050	0.0193 <0.0000050
Molybdenum (Mo)-Total	mg/L	2	0.00021	0.00023	0.000163	0.000141	0.000242	0.000121	0.000128	0.000144
Nickel (Ni)-Total	mg/L	0.025-0.15 (d,f)	<0.00020	<0.00040	<0.00050	< 0.00050	0.00059	< 0.00050	< 0.00050	<0.00050
Phosphorus - Total Potassium (K)-Total	mg/L mg/L	0.005-0.015 (lakes only)	<0.050 0.43	<0.050 0.72	<0.050 0.509	<0.050 0.520	<0.050 0.544	<0.050 0.511	<0.050 0.502	<0.050 0.363
Rubidium (Rb) - Total	mg/L	-	-	-	0.00043	0.00048	0.00064	0.00051	0.00046	0.00038
Selenium (Se)-Total	mg/L	0.002	< 0.00050	< 0.00050	0.000055	0.00005	0.000169	<0.000050	<0.000050	<0.000050
Silicon - Total Silver (Ag)-Total	mg/L mg/L	0.0001-0.003 (d)	4.2 <0.000050	4.6 <0.000050	4.19 <0.000010	3.34 <0.000010	4.65 <0.000010	4.17 <0.000010	3.79 <0.000010	4.85 <0.000010
Sodium (Na)-Total	mg/L	-	4.17	4.57	3.58	7.70	6.97	4.29	5.79	6.24
Strontium - Total	mg/L	-	0.0542	0.0594	0.0461	0.04320	0.06900	0.04820	0.04180	0.0563
Sulfur - Total Tellurium - Total	mg/L mg/L	<u>-</u>	<3.0 <0.00020	<3.0 <0.00050	0.51 <0.00020	0.5 <0.00020	<0.50 <0.00020	<0.50 <0.00020	<0.50 <0.00020	<0.50 <0.00020
Thallium (Tl)-Total	mg/L	0.0008	<0.00020	<0.000020	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Thorium - Total	mg/L	-	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Tin (Sn)-Total Titanium (Ti)-Total	mg/L mg/L	-	<0.00020 <0.0050	<0.00020 <0.0050	<0.00010 <0.00030	<0.00010 0.00062	<0.00010 0.00970	<0.00010 0.00047	<0.00010 0.00073	<0.00010 <0.00030
Tungsten (W) - Total	mg/L	-	-0.0050	-	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Uranium (U)-Total	mg/L	0.0085	0.000047	0.000033	0.000025	0.000023	0.000195	0.000021	0.000021	0.000016
Vanadium (V)-Total Zinc (Zn)-Total	mg/L mg/L	0.033-0.34 (d,f)	<0.0010 <0.0040	<0.0010 <0.0040	<0.00050 <0.0030	0.00054 <0.0030	0.00263 <0.0030	0.00052 <0.0030	0.00069 <0.0030	0.00055 <0.0030
Zirconium - Total	mg/L		< 0.00010	< 0.00010	< 0.000060	< 0.000060	< 0.000060	<0.000060	<0.000060	<0.00020
Dissolved Metals		0.000.01.0								
Aluminum (Al)-Dissolved Antimony (Sb)-Dissolved	mg/L mg/L	0.023-0.1 (b,c)	0.0168 <0.00010	0.0071 <0.00020	0.0123 <0.00010	0.0261 <0.00010	0.0061 <0.00010	0.0134 <0.00010	0.0204 <0.00010	0.0077 <0.00010
Arsenic (As)-Dissolved	mg/L	<u> </u>	0.0021	0.00181	0.0010	0.00095	0.00163	0.00124	0.00099	0.00138
Barium (Ba)-Dissolved	mg/L	-	0.0136	0.0117	0.0103	0.01190	0.01540	0.01030	0.01010	0.0138
Beryllium (Be)-Dissolved Bisumuth - Dissolved	mg/L mg/L	-	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050	<0.00010 <0.000050
Boron (B)-Dissolved	mg/L	-	0.0058	0.0067	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Cadmium (Cd)-Dissolved	mg/L	0.000027 - 0.00280 (d, f)	<0.000010	< 0.000010	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050	<0.0000050
Calcium (Ca)-Dissolved Cesium (Cs) -Dissolved	mg/L mg/L	-	15.2	13.4	9.80 < 0.000010	9.310 <0.000010	14.100 <0.000010	9.650 <0.000010	8.950 <0.000010	11.2 <0.000010
Chromium (Cr)-Dissolved	mg/L	-	< 0.00050	< 0.00050	0.00013	0.00011	0.00014	0.00015	0.00013	< 0.00010
Cobalt (Co)-Dissolved	mg/L	-	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Copper (Cu)-Dissolved Iron (Fe)-Dissolved	mg/L mg/L	0.35	<0.00020 0.045	<0.00040 0.032	<0.00020 0.013	<0.00020 0.022	<0.00020 0.018	<0.00020 0.032	<0.00020 0.033	<0.00020 0.026
Lead (Pb)-Dissolved	mg/L	-	< 0.00010	< 0.00020	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050
Lithium (Li)-Dissolved	mg/L	-	0.00051	0.0004	<0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.0010
Magnesium (Mg)-Dissolved Manganese (Mn)-Dissolved	mg/L mg/L	-	1.06 0.0119	1.05 0.00588	0.893 0.00247	0.775 0.00378	1.020 0.00734	0.879 0.00841	0.758 0.00706	0.915 0.0148
Mercury (Hg)-Dissolved	mg/L	-	< 0.000020	< 0.000010	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050
Molybdenum (Mo)-Dissolved	mg/L	-	0.00023 <0.00020	0.00022 <0.00040	0.000153	0.000112	0.000197	0.000144	0.00014 <0.00050	0.000149
Nickel (Ni)-Dissolved Phosphorus - Dissolved	mg/L mg/L	-	<0.00020	<0.00040	<0.00050 <0.050	<0.00050 <0.050	<0.00050 <0.050	<0.00050 <0.050	<0.00050	<0.00050 <0.050
Potassium (K)-Dissolved	mg/L	-	0.51	0.66	0.487	0.571	0.498	0.514	0.531	0.343
Rubidium (Rb) - Dissolved Selenium (Se)-Dissolved	mg/L mg/L	-	<0.00050	<0.00050	0.00038 <0.000050	0.00045 <0.000050	0.00044 0.000057	0.00047 <0.000050	0.00041 <0.000050	0.00037 <0.000050
Silicon - Dissolved	mg/L mg/L	-	4.6	4.4	4.01	3.430	4.280	4.170	3.470	4.40
Silver (Ag)-Dissolved	mg/L	-	< 0.000050	< 0.000050	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010
Sodium (Na)-Dissolved	mg/L	-	4.7	4.34 0.0567	3.82 0.0474	8.00 0.04400	6.55 0.06490	4.40	6.22 0.04050	6.21 0.0578
Strontium - Dissolved Sulfur- Dissolved	mg/L mg/L	-	0.0627 <3.0	<3.0	< 0.50	< 0.50	< 0.50	0.04840 <0.50	< 0.50	< 0.50
Tellurium - Dissolved	mg/L	-	< 0.00020	< 0.00050	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Thallium (Tl)-Dissolved	mg/L	-	<0.000020	<0.000020	<0.000010	<0.000010 <0.00010	<0.000010	<0.000010	<0.000010	<0.000010
Thorium - Dissovled Tin (Sn)-Dissolved	mg/L mg/L	-	<0.00010 <0.00020	<0.00010 <0.00020	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010
Titanium (Ti)-Dissolved	mg/L	-	<0.0050	<0.0050	< 0.00030	< 0.00030	< 0.00030	< 0.00030	0.00031	< 0.00030
Tungsten (W) - Dissolved	mg/L	-	0.000052	0.00002	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Uranium (U)-Dissolved Vanadium (V)-Dissolved	mg/L mg/L	-	0.000062 <0.0010	0.000027 <0.0010	0.000026 <0.00050	0.000017 <0.00050	0.000031 <0.00050	0.00002 <0.00050	0.000017 <0.00050	0.000013 <0.00050
Zinc (Zn)-Dissolved	mg/L	-	< 0.0040	< 0.0040	< 0.0010	< 0.0010	0.001	< 0.0010	< 0.0010	< 0.0010
Zirconium - Dissolved	mg/L	-	< 0.00010	< 0.00010	< 0.000060	< 0.000060	< 0.000060	< 0.000060	< 0.000060	< 0.00020

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
- (2) BC Contaminated Sites Regulation (CSR) for protection of aquatic life or drinking water, Schedule 3.2, last updated July 2018
 (3) All criteria limits for BCWQG Aquatic Life Guidelines based on Total Metal Concentration except Aluminum (Dissolved) and Cadmium (Dissolved)
 (4) BC MoE Water Quality Guidelines for Protectionof Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 'C
- (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L. (c) Limit for dissolved metals, not total metals
- (d) Limit dependent upon hardness.
- (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromium VI in sample (f) Where hardness data was unavailable, 50 mg/L was assumed (g) Maximum value
- (h) Limit dependent upon chloride concentration
- (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows * Criteria exceeds detection limit MAC = Maximum Acceptable Concentration
- $AO = Aesthetic\ Objective$

BCWQG-AW BC Water Quality Guidelines for Protection of Aquatic Life

Table 19: Surface Water Quality Results Sampling Location SW-05 (Clearwater Creek at FSR)

Fig. 1995			BC MoE Guidelines	05-Jul-17	26-Sep-17	08-Nov-17	12-Apr-18	17-Jul-18	19-Nov-18	19-Nov-18		29-Mar-19	25-Jun-19
Tempor	Field		BCWQG-AW (1)							Duplicate	RPD		
Expension	Ţ												
Part 1000		°C							5.2		-		12.2
March 1988	Depth to water		-	7.41	13.3	13.3	13.1	5.5	9.3	-	-		-
Section Column												0.57	0.984
## Commens of Commens	,												79.0
March Marc	рН	pН	6.5-9.0	7.9	8	8.2	7.9	6.6	8.1	8.2		8.03	
Again Colore (1970)	Total Dissolved Solids		25 mg/L (backgr. 25-250 mg/l)) (1)								-		
Change C		·					-				-		
Section Column		·					-				-		
Description mpt	Ammonia, Total (as N)	mg/L	2.0-26.5 (a)	< 0.03	< 0.03	< 0.0050		< 0.0050	< 0.0050	< 0.0050		< 0.0050	< 0.0050
Treated Page	Bromide (Br)		-	-		< 0.050		-	< 0.050		-		< 0.050
Section 19	` /	·											
State (Section met		mg/L											<0.0050
Prop. Prop	Sulfate (SO4)	mg/L	128-429 (d)	3.1	2.7	2.86	2.66		2.48	2.39	1.85%	2.21	2.56
Time Name	8	_)					<2.0					
Comment of June mg		mg/L	-	-	-	<20	<20	<20	<20	<20	-	<20	<20
Appendix	Aluminum (Al)-Total	,									2.10%		0.0060
Exprise Per	Arsenic (As)-Total	mg/L		0.00184	0.00181	0.00197	0.00173	0.00202	0.00178	0.00186		0.00193	0.00208
Append December Company Comp		,	1 0.00013	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	1.68%	< 0.00010	< 0.00010
Calcinatics Calcination Calcinatics Calcinatics Calcination Calcinatics Calcination													<0.000050 <0.010
Communication Temporary Communication	Cadmium (Cd)-Total	mg/L	-	< 0.000010	< 0.000010	0.0000294	< 0.0000050	< 0.0000050	< 0.0000050	< 0.0000050	-	0.0000072	< 0.0000050
Control Cont	Cessium (Cs) - Total	mg/L	-	-	-	0.000011	< 0.000010	< 0.000010	< 0.000010	< 0.000010	-	< 0.000010	< 0.000010
Compared Property Compared		,	\ /										0.00036 <0.00010
Land Tip Front	Copper (Cu)-Total	mg/L	0.0032-0.0396 (d,f)										<0.00050 <0.010
Magazane May Tool	Lead (Pb)-Total	mg/L		< 0.00010	< 0.00020	< 0.000050	< 0.000050	< 0.000050	< 0.000050	< 0.000050	-	< 0.000050	< 0.000050
Memory March Mar	Magnesium (Mg)-Total	mg/L	-	2.28	2.55	2.65	2.190	2.440	2.280	2.200	1.79%	2.040	2.29
State Control Fig. Control	8 ()	,											0.0014 <0.000050
Pumplemer Trial													0.000387 <0.00050
Relation (RD-Trial mg/L 0.002 -0.0050	Phosphorus - Total	mg/L		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050	< 0.050
Silcons Total mg	Rubidium (Rb)- Total	Ü		-	-	0.00040	0.00029	0.00033	0.00034	0.00038	5.56%	0.00036	0.00031
Sedimit (No.) Total mg t		,	0.002										
Streetman Treet		_											<0.000010
Telluman Tip-Teal mgL	Strontium - Total	mg/L	-	0.104	0.0995						1.29%		
Thorism Total mg/L	Tellurium - Total	mg/L	-	< 0.00020	< 0.00050	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020		< 0.00020	< 0.00020
Transmit (Ti-Froat mg/L		·									-		<0.00010 <0.00010
Timpster (N) - Total		,											<0.00010 <0.00030
Vandam (V)-Total	Tungsten (W) - Total	mg/L		-	-	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010		< 0.00010	< 0.00010
Dissorted Methods	Vanadium (V)-Total	mg/L	-	0.0012	0.001	0.00106	0.00109	0.00118	0.00097	0.00095	1.04%	0.00109	0.00108
Aluminum (Al-Dissolved mg/L 0.023-0.1 (bc) -0.0050 0.0001 0.00010 0.000010 0.													<0.0030 <0.00020
Anthrony (Sh)-Dissolved		mg/L	0.023-0.1 (b.c)	<0.0050	<0.0050	0.0044	0.0056	0.0026	0.0032	0.00310	1.59%	0.00120	0.0024
Barlium (Ba)-Dissolved	Antimony (Sb)-Dissolved	mg/L	-	< 0.00010	< 0.00020	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	-	< 0.00010	< 0.00010
Bissmuth Dissolved	Barium (Ba)-Dissolved	mg/L	-	0.0194	0.0199	0.0219	0.02130	0.02000	0.02100	0.0201	2.19%	0.0227	0.0205
Boron (B-Dissolved	•	,											<0.00010 <0.000050
Calcium (Ca)-Dissolved mg/L		mg/L	0,000027 - 0 00280 (d f)								-		<0.010 <0.000050
Chromism (Cr)-Dissolved	Calcium (Ca)-Dissolved	mg/L	-	23		25.2	26.200	25.800	25.100	25.1	0.00%	28.2	27.6
Copper (Cu)-Dissolved	Chromium (Cr)-Dissolved	mg/L	-	< 0.00050		0.00035	0.00051	0.00033	0.00036	0.00031	7.46%	0.00033	0.00037
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,											<0.00010 <0.00020
Lithium (Li)-Dissolved mg/L -	Iron (Fe)-Dissolved	mg/L											<0.010 <0.000050
Manganese (Mn)-Dissolved mg/L - <0.00020 0.00038 <0.00010 0.000033 0.00273 0.00215 0.00056 59.57% 0.0064 0.00056 Mercury (Hg-Dissolved mg/L - - <0.000010 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.0000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.000050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <	Lithium (Li)-Dissolved	mg/L	-	0.00101	0.00114	< 0.0010	0.0011	0.001	0.001	0.001	0.00%	< 0.0010	0.0011
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Manganese (Mn)-Dissolved	mg/L	-		0.00038	< 0.00010	0.00033	0.00073	0.00221	0.00056	59.57%	0.0064	0.0005
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		·		0.00038									<0.0000050 0.000387
Potassium (K)-Dissolved mg/L -	Nickel (Ni)-Dissolved	mg/L											<0.00050 <0.050
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Potassium (K)-Dissolved	mg/L	-		0.96	0.925	0.893	0.881	0.906	0.893	0.72%	0.809	0.910
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Selenium (Se)-Dissolved	mg/L	-		< 0.00050	0.000120	0.000138	0.000158	0.000141	0.00	7.63%	0.00	0.000150
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		·											4.63 <0.000010
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sodium (Na)-Dissolved	mg/L		1.86	2.32	2.41	2.01	2.05	2.17	2.11		1.8	2.18
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sulfur- Dissolved	mg/L	-	<3.0	<3.0	0.79	0.83	0.85	0.85	0.79	3.66%	< 0.50	0.74
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Thallium (Tl)-Dissolved	·		< 0.000020	< 0.000020	< 0.000010	< 0.000010	< 0.000010	< 0.000010	< 0.000010		< 0.000010	< 0.000010
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													<0.00010 <0.00010
Uranium (U)-Dissolved mg/L - 0.00015 0.000135 0.000149 0.000148 0.000144 0.000144 0.000144 0.00% 0.000139 0.00013	Titanium (Ti)-Dissolved	mg/L	-	< 0.0050	< 0.0050	< 0.00030	< 0.00030	< 0.00030	< 0.00030	< 0.00030	-	< 0.00030	< 0.00030
I Vanadium (V)-Dissolved I mg/L - I < 0.0010 I < 0.0010 I 0.00088 I 0.00091 I 0.00086 I 0.00087 I 0.00088 I 0.57% I 0.00005 I 0.00105	Uranium (U)-Dissolved	mg/L		0.00015	0.000135	0.000149	0.000148	0.000144	0.000144	0.000144	0.00%	0.000139	0.000139
$ \frac{\text{Zinc (Zn)-Dissolved}}{\text{mg/L}} \qquad \frac{\text{mg/L}}{\text{solution}} \qquad - \qquad - < 0.0040 \qquad 0.0043 \qquad 0.0011 \qquad < 0.0010 \qquad < 0.0010 \qquad < 0.0010 \qquad - < 0.0010 \qquad < 0.001$	Vanadium (V)-Dissolved Zinc (Zn)-Dissolved	mg/L mg/L	- -									< 0.0010	0.00103 <0.0010
Zirconium - Dissolved mg/L - < 0.00010 < 0.00010 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 - < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.000060 < 0.	Zirconium - Dissolved	mg/L	-	< 0.00010	< 0.00010	< 0.000060	<0.000060	<0.000060	<0.000060	<0.000060	-	<0.000060	<0.00020

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for protection of aquatic life or drinking water, Schedule 3.2, last updated July 2018
 (3) All criteria limits for BCWQG Aquatic Life Guidelines based on Total Metal Concentration except Aluminum (Dissolved) and Cadmium (Dissolved)
- (4) BC MoE Water Quality Guidelines for Protectionof Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
- (c) Limit for dissolved metals, not total metals
- (d) Limit dependent upon hardness.
 (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromium VI in sample
- (f) Where hardness data was unavailable, 50 mg/L was assumed
- (g) Maximum value
- (h) Limit dependent upon chloride concentration
- (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows
- * Criteria exceeds detection limit MAC = Maximum Acceptable Concentration AO = Aesthetic Objective

BCWQG-AW

BC MoE Quality Guidelines for Protection of Aquatic Life

Table 20: Forceman Ridge Precipitation and Leachate Generation Rates

Design Precipitation									
Global Warming Factor	15%								
Design Average Precipitation	1986	mm/year							
Design Extreme Ratio	1.4								
Design Extreme Precipitation	2781	mm/year							
Leachate Production (HELP)									
Average Condition									
Active Areas	1413	mm/year							
Temporary Closed Areas	353	mm/year							
Geomembrane Capped Areas	0.43	mm/year							
Extreme Condition	on								
Active Areas	1957	mm/year							
Temporary Closed Areas	489	mm/year							
Geomembrane Capped Areas	0.86	mm/year							

Table 21: Leachate Water Quality Results Sampling Location F5, Sand Cyclone

		MC MOE									
Field Conductivity	Units	OC Criteria	06-Jun-17	05-Jul-17	15-Aug-17 352	07-Nov-17 566	25-Apr-18 532	18-May-18 239	27-Aug-18 1019	16-Apr-19 978	22-May-19 1056
Conductivity pH	uS/cm pH	-	83.5 8.4	96.4 7.4	6.8	7.08	6.46	7.07	6.96	6.95	7
Temperature	°C	-	16.2	13.3	14.2	3.5	5.0	16.2	18.4	6.7	15.3
Dissolved Oxygen Turbidity	mg/L NTU	-	-	6.4	12.7	7.7	5.7	-	1 -	1.4	2.1
ORP	mV	-	-	-	-	-	105.6	-	-	-	195
Analyte Conductivity	Units uS/cm	-	-	-	-	-	-	-	-	-	
Hardness (as CaCO3)	mg/L	-	43.2	39.8	59.3	244	213	-	227	377	304
pH Total Suspended Solids	pH mg/L	6.5 - 8.5	7.4	7.4	7.6	7.57	-	-	8.02	7.29	7.48
Total Dissolved Solids	mg/L		-	-	-	-	-	-	-	-	
Alkalinity, Bicarbonate (as CaCO3)	mg/L mg/L		-	-	-	-	-	-	-	-	
Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3)	mg/L mg/L		-	-	-	-	-	-	-	-	
Alkalinity, Total (as CaCO3)	mg/L	- 214	36 <0.03	41 <0.03	59 <0.03	348 15.5	110 18.5	-	466 30.8	553 36.8	539 28.1
Ammonia, Total (as N) Total Nitrogen as N	mg/L mg/L	214 300	- 0.03	-	-	-	15.3	-	-	-	20.1
Bromide (Br)	mg/L	5000		-	- 2.7	-	0.071	-		<0.50	0.26
Chloride (Cl) Fluoride (F)	mg/L mg/L	5000	<1.0 <0.10	2.4 <0.10	2.7 <0.10	58.4 <0.20	15.3 0.071	-	<0.25 <0.10	88.9 <0.20	91.8 <0.10
Nitrate (as N)	mg/L	-	<0.01	0.023	0.031	< 0.050	0.071	-	0.044	<0.050	<0.025
Nitrite (as N) Sulfate (SO4)	mg/L mg/L	<u>-</u> -	<0.01 3.4	<0.01 5.5	<0.01 5.3	<0.010	<0.0050 <0.0010	-	<0.0050 <1.5	<0.010 <3.0	0.0052 2.6
Orthophosphorus (P)	mg/L	-	-	-	-	< 0.0010	< 0.0010	-	< 0.0010	0.0554	0.0017
Total Organic Carbon BOD	mg/L mg/L	<u>-</u>	2.14 <3.0	1.39 <4.0	1.57 <4.0	146	42.4 11.8	-	3.2 24.4	219	221 51
COD	mg/L	-	-	-	-	466	167	-	178	669	234
Total Metals	400 O /T		0.054	0.0407	0.0192	0.0200	0.0200		0.0269	0.04	0.00
Aluminum (Al)-Total Antimony (Sb)-Total	mg/L mg/L	-	0.054 0.00021	0.0497 0.00027	0.0183 0.00022	0.0388 0.00059	0.0290 0.00041	-	0.0268 0.00045	0.04 0.001	0.09 0.001
Arsenic (As)-Total	mg/L	-	< 0.00050	<0.00050	<0.00050	0.00250	0.00529	-	0.00367	0.01	0.01
Barium (Ba)-Total Beryllium (Be)-Total	mg/L mg/L	-	0.0513 <0.00010	0.0341 <0.00010	0.0432 <0.00010	0.241 <0.00010	0.320 <0.00020	-	0.254 <0.00010	0.38 <0.00050	0.41 <0.00050
Bismuth	mg/L	-	< 0.00010	< 0.00010	< 0.00010	< 0.000050	< 0.00010	-	< 0.000050	<0.00025	<0.00025
Boron (B)-Total Cadmium (Cd)-Total	mg/L mg/L	0.1	0.009 <0.000010	0.0165 0.000019	0.0111 <0.000010	0.355 0.0000618	0.217 0.0005260	-	0.508 0.000051	0.55 0.0004	0.56 0.0001
Calcium (Ca)-Total	mg/L	-	15.9	14.6	22	83.6	72.9	-	68.6	125.00	98.40
Cessium (Cs) - Total	mg/L mg/L	-	<0.00050	<0.00050	<0.00050	0.000630 0.00453	0.000529 0.00093	-	0.000876 0.00146	0.00091 0.003	0.00087 0.002
Chromium (Cr)-Total Cobalt (Co)-Total	mg/L mg/L	-	< 0.00010	< 0.00010	< 0.00010	0.00823	0.00965	-	0.00226	0.01	0.00
Copper (Cu)-Total	mg/L mg/L	- 6	0.00155 0.086	0.00203 0.093	0.00177 0.052	0.00650 5.64	0.02150 14.90	2.21	0.0032 2.5	0.01 25.30	0.24 7.62
fron (Fe)-Total Lead (Pb)-Total	mg/L mg/L	-	0.086	0.093	< 0.0020	0.000572	0.004330	- 2.21	0.00030	0.002	0.034
Lithium (Li)-Total	mg/L	-	<0.00010	<0.00010	<0.00010	< 0.0010	< 0.0020	-	< 0.0010	<0.0050	<0.0050
Magnesium (Mg)-Total Manganese (Mn)-Total	mg/L mg/L	<u>-</u>	0.841 0.00355	0.806 0.00483	1.05 0.012	8.63 16.7	7.56 25.0	-	13.60 7.6	16.00 19.20	14.30 12.50
Mercury (Hg)-Total	mg/L	-	< 0.00002	< 0.000020	< 0.000010	< 0.000025	< 0.0000050	-	0.0000087	<0.000025	0.00
Molybdenum (Mo)-Total Nickel (Ni)-Total	mg/L mg/L	-	0.00058 <0.00020	0.00068 <0.00020	0.00074 <0.00040	0.000640 0.00667	0.000700 0.00540	-	0.00040 0.0054	0.0008 0.01	0.0008 0.01
Phosphorus - Total	mg/L	-	< 0.050	< 0.050	<0.050	1.32	0.13	-	0.74	0.78	1.11
Potassium (K)-Total Rubidium (Rb) - Total	mg/L	-	0.89	0.93	1.17	28.5 0.0326	16.4 0.0257	-	44.6	48.50 0.05	43.90 0.05
Selenium (Se)-Total	mg/L mg/L	-	<0.00050	<0.00050	<0.00050	0.0326	< 0.00010	-	0.0506 0.00009	<0.00025	<0.00025
Silicon - Total	mg/L	-	2.3	2.1	2.5	2.72	3.43	-	2.42	3.50	2.86
Silver (Ag)-Total Sodium (Na)-Total	mg/L mg/L	-	<0.000050 1.28	0.000073 1.4	<0.000050 2.13	<0.000010 54.1	<0.000020 36.1	-	<0.000010 84.4	<0.000050 90.40	<0.000050 91.90
Strontium - Total	mg/L	-	0.183	0.204	0.271	0.297	0.401	-	0.347	0.55	0.44
Sulfur - Total Tellurium - Total	mg/L mg/L	-	<0.00020	3.9 <0.00020	<3.0 <0.00050	6.94 <0.00020	<1.0 <0.00040	-	1.27 <0.00020	<2.5 <0.0010	<2.5 <0.0010
Thallium (Tl)-Total	mg/L	-	< 0.000020	< 0.000020	< 0.000020	0.000018	< 0.000020	-	0.000011	<0.000050	<0.000050
Thorium - Total Tin (Sn)-Total	mg/L mg/L	-	<0.00010 <0.00020	<0.00010 <0.00020	<0.00010 <0.00020	<0.00010 0.00013	<0.00020 0.00037	-	<0.00010 <0.00010	<0.00050 <0.00050	<0.00050 0.00
Titanium (Ti)-Total	mg/L	-	< 0.0050	<0.0050	<0.0050	0.00274	0.00203	-	0.00134	0.00	0.01
Tungsten (W) - Total Uranium (U)-Total	mg/L mg/L	-	<0.000020	<0.000020	0.00003	0.00010 0.000045	<0.00020 0.000083	-	<0.00010 0.000056	<0.00050 0.0002	<0.00050 0.0001
Vanadium (V)-Total	mg/L	-	<0.000020	< 0.000020	< 0.0010	0.000043	0.000083	-	0.00036	0.0002	0.003
Zinc (Zn)-Total	mg/L	100	0.0315 <0.00010	0.0249 <0.00010	<0.0040 <0.00010	0.0428 0.000063	0.0616 <0.00012	-	<0.0030 0.000103	0.02 <0.00030	0.38
Zirconium - Total Dissolved Metals	mg/L	-	<0.00010	<0.00010	<0.00010	0.000063	<0.00012	-	0.000103	<0.00030	<0.00030
Aluminum (Al)-Dissolved	mg/L	-	-	0.0084	0.0066	-	-	-	-		
Antimony (Sb)-Dissolved Arsenic (As)-Dissolved	mg/L mg/L	-	-	0.00026 <0.00050	0.00033 <0.00050	-	-	-	-		
Barium (Ba)-Dissolved	mg/L	-	-	0.0291	0.0409	-	-	-	-		
Beryllium (Be)-Dissolved Bisumuth - Dissolved	mg/L mg/L	-	-	<0.00010 <0.00010	<0.00010 <0.00010	-	-	-	-		
Boron (B)-Dissolved	mg/L	-	-	0.0094	0.012	-	-	-	-		
Cadmium (Cd)-Dissolved Calcium (Ca)-Dissolved	mg/L mg/L	-	-	0.000011 14.10	<0.000010 21.00	-	-	-	-		
Cesium (Cs) - Dissolved	mg/L mg/L	-	-	-	-	-	-	-	-		
Chromium (Cr)-Dissolved	mg/L	-	-	<0.00050 <0.00010	<0.00050 <0.00010	-	-	-	-		
Cobalt (Co)-Dissolved Copper (Cu)-Dissolved	mg/L mg/L	-	-	0.00010	0.00227	-	-	-	-	<u> </u>	<u> </u>
ron (Fe)-Dissolved	mg/L	-	-	<0.010	<0.010	-	-	1.18	-		
Lead (Pb)-Dissolved Lithium (Li)-Dissolved	mg/L mg/L	-	-	<0.00010 0.00022	<0.00020 0.00039	-	-	-	-		
Magnesium (Mg)-Dissolved	mg/L	-	-	0.77	1.03	-	-	-	-		
Manganese (Mn)-Dissolved Mercury (Hg)-Dissolved	mg/L mg/L	-	-	<0.00020 0.00067	0.0627 <0.000010	-	-	-	-		
Molybdenum (Mo)-Dissolved	mg/L	-	-	< 0.00020	0.00073	-	-	-	-		
Nickel (Ni)-Dissolved Phosphorus - Dissolved	mg/L mg/L	-	-	<0.050 0.86	<0.00040 <0.050	-	-	-	-		
Potassium (K)-Dissolved	mg/L	-	-	<0.00050	1.230	-	-	-	-		
Rubidium (Rd) - Dissolved	mg/L	-	-	- 1.7	<0.00050	-	-	-	-	<u></u>	
Selenium (Se)-Dissolved Silicon - Dissolved	mg/L mg/L	-	-	0.000072	2.4	-	-	-	-	<u> </u>	<u> </u>
Silver (Ag)-Dissolved	mg/L	-	-	1.34	< 0.000050	-	-	-	-	<u> </u>	
Sodium (Na)-Dissolved Strontium - Dissolved	mg/L mg/L	-	-	0.19 <3.0	2.25 0.241	-	-	-	-	<u> </u>	
Sulfur- Dissolved	mg/L	-	-	< 0.00020	<3.0	-	-	-	-		
Fellurium - Dissolved Fhallium (Tl)-Dissolved	mg/L mg/L	-	-	<0.000020 <0.00010	<0.00050 <0.000020	-	-	-	-	<u></u>	
Thorium - Dissolved	mg/L mg/L	-	-	<0.00010	<0.000020	-	-	-	-	<u> </u>	<u> </u>
Γin (Sn)-Dissolved	mg/L	-	-	<0.0050	<0.00020	-	-	-	-		
Pi4i (TP') TS' 1 1	mg/L	-	-	<0.000020	<0.0050	-	-	-	-		
Titanium (Ti)-Dissolved Tungston (W) - Dissolved		-	-	-							
Tungston (W) - Dissolved Uranium (U)-Dissolved	mg/L mg/L	-	-	< 0.0010	0.000024	-	-	-	-		
Tungston (W) - Dissolved	mg/L						- -				

OC Criteria Shaded Value Means Exceeded Discharge Criteria (OC)

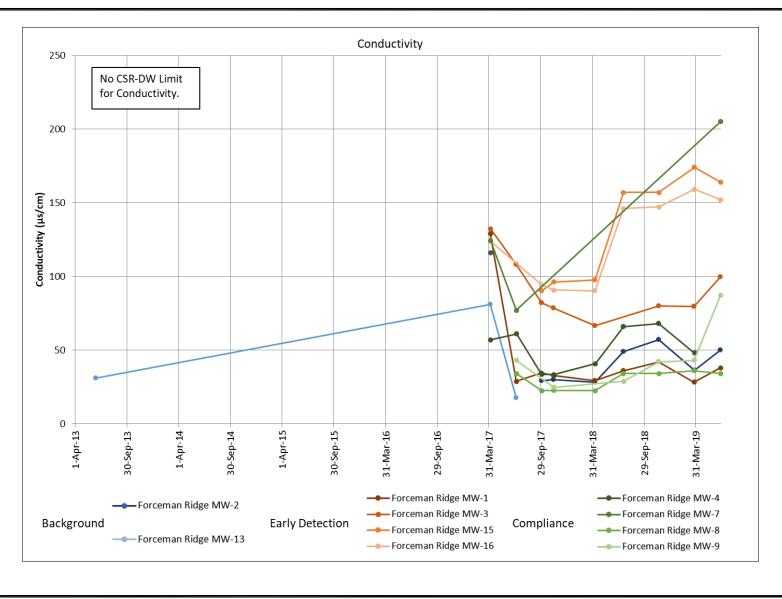
Table 21: Leachate Water Quality Results Sampling Location F

		MC MOE					
Field	Units	OC Criteria	28-May-19	29-May-19	31-May-19	17-Jul-19	1-Aug-19
Conductivity pH	uS/cm pH	-				858 6.91	838 6.88
Temperature Dissolved Oxygen	°C mg/L	-				15.7 0.9	18.7 2.2
Turbidity	NTU	-				-	-
ORP Analyte	mV Units	-				451.6	348
Conductivity	uS/cm	-	-	-	070	040	-
Hardness (as CaCO3) pH	mg/L pH	6.5 - 8.5	252	254	278	210 8.27	194 8.47
Total Suspended Solids	mg/L		-				-
Total Dissolved Solids Alkalinity, Bicarbonate (as CaCO3)	mg/L mg/L		-				-
Alkalinity, Carbonate (as CaCO3) Alkalinity, Hydroxide (as CaCO3)	mg/L mg/L		-				-
Alkalinity, Total (as CaCO3)	mg/L	-	-			366	365
Ammonia, Total (as N) Total Nitrogen as N	mg/L mg/L	214 300	-			21.7	18.3 18.9
Bromide (Br)	mg/L		-			<0.25	0.28
Chloride (Cl) Fluoride (F)	mg/L mg/L	5000	-			79.4 <0.10	94.2 <0.10
Nitrate (as N) Nitrite (as N)	mg/L mg/L	-	-			6.87 0.0323	1.48 0.0157
Sulfate (SO4)	mg/L	-	-			4.7	1.8
Orthophosphorus (P) Total Organic Carbon	mg/L mg/L	-	-			0.0057 25.4	0.004 20.5
BOD	mg/L	-	-			13.2	28.1
COD Total Metals	mg/L	-	-			76	72
Aluminum (Al)-Total Antimony (Sb)-Total	mg/L mg/L	-	0.03 0.001	0.02 <0.00050	0.03 0.001	0.04 0.001	0.03 0.000
Arsenic (As)-Total	mg/L	-	0.01	0.01	0.00	0.00	0.00
Barium (Ba)-Total Beryllium (Be)-Total	mg/L mg/L	-	0.41 <0.00050	0.50 <0.00050	0.32 <0.00020	0.36 <0.00010	0.21 <0.00010
Bismuth	mg/L	-	<0.00025 0.47	<0.00025 0.54	<0.00010 0.57	<0.000050	<0.000050
Boron (B)-Total Cadmium (Cd)-Total	mg/L mg/L	0.1	0.0001	0.0000	0.0005	0.0007	0.0002
Calcium (Ca)-Total Cessium (Cs) - Total	mg/L mg/L	-	81.30 0.00092	80.40 0.00094	87.70 0.00087	62.50 0.00102	55.20 0.00083
Chromium (Cr)-Total	mg/L	-	0.001	0.001	0.001	0.001	0.001
Cobalt (Co)-Total Copper (Cu)-Total	mg/L mg/L	-	0.00 <0.0025	0.00 0.01	0.00 0.02	0.00 0.86	0.00 0.01
Iron (Fe)-Total	mg/L	6	6.23	6.52	3.68	7.67	1.15
Lead (Pb)-Total Lithium (Li)-Total	mg/L mg/L	-	0.002 <0.0050	0.001 <0.0050	0.005 <0.0020	0.007 <0.0010	0.002 <0.0010
Magnesium (Mg)-Total Manganese (Mn)-Total	mg/L mg/L	<u>-</u>	12.00 14.30	13.00 17.40	14.30 8.58	13.10 10.90	13.50 3.88
Mercury (Hg)-Total	mg/L	-	-	<0.000025	0.00	<0.00010	<0.000025
Molybdenum (Mo)-Total Nickel (Ni)-Total	mg/L mg/L	<u>-</u>	0.0013 0.01	0.0013 0.01	0.0009 0.01	0.0020 0.01	0.0013 0.01
Phosphorus - Total Potassium (K)-Total	mg/L mg/L	-	0.43 36.90	0.58 35.70	0.48 43.60	0.52 40.00	0.22 42.30
Rubidium (Rb) - Total	mg/L	-	0.05	0.05	0.05	0.05	0.05
Selenium (Se)-Total Silicon - Total	mg/L mg/L	-	<0.00025 2.58	<0.00025 2.81	0.00 2.92	0.00 3.28	0.00 3.09
Silver (Ag)-Total	mg/L	-	<0.000050	<0.000050	<0.000020	0.00	<0.000010
Sodium (Na)-Total Strontium - Total	mg/L mg/L	<u>-</u>	80.10 0.41	79.40 0.39	93.90 0.42	82.60 0.34	89.10 0.31
Sulfur - Total Tellurium - Total	mg/L mg/L	-	<2.5 <0.0010	<2.5 <0.0010	3.20 <0.00040	2.19 <0.00020	1.47 <0.00020
Thallium (Tl)-Total	mg/L	-	<0.000050	<0.000050	<0.000020	0.00	<0.000010
Thorium - Total Tin (Sn)-Total	mg/L mg/L	-	<0.00050 <0.00050	<0.00050 <0.00050	<0.00020 <0.00020	<0.00010 0.00	<0.00010 0.00
Titanium (Ti)-Total	mg/L	-	<0.0015 <0.00050	<0.0015 <0.00050	0.00 <0.00020	0.00 0.00	<0.00090 <0.00010
Tungsten (W) - Total Uranium (U)-Total	mg/L mg/L	-	0.00050	0.00030	0.00020	0.0001	0.00010
Vanadium (V)-Total Zinc (Zn)-Total	mg/L mg/L	100	<0.0025 <0.015	<0.0025 <0.015	0.002 0.01	0.003 0.06	0.002 0.01
Zirconium - Total	mg/L	-	<0.00030	<0.00030	<0.00012	<0.00020	<0.00020
Dissolved Metals Aluminum (Al)-Dissolved	mg/L	-					
Antimony (Sb)-Dissolved Arsenic (As)-Dissolved	mg/L mg/L	-					
Barium (Ba)-Dissolved	mg/L mg/L	-					
Beryllium (Be)-Dissolved Bisumuth - Dissolved	mg/L mg/L	-					
Boron (B)-Dissolved	mg/L	-					
Cadmium (Cd)-Dissolved Calcium (Ca)-Dissolved	mg/L mg/L	-	<u> </u>				
Cesium (Cs) - Dissolved Chromium (Cr)-Dissolved	mg/L mg/L	-					
Cobalt (Co)-Dissolved	mg/L	-					
Copper (Cu)-Dissolved Iron (Fe)-Dissolved	mg/L mg/L	-	 				
Lead (Pb)-Dissolved	mg/L	-					
Lithium (Li)-Dissolved Magnesium (Mg)-Dissolved	mg/L mg/L	<u>-</u>	<u>L</u>	<u> </u>			
Manganese (Mn)-Dissolved Mercury (Hg)-Dissolved	mg/L mg/L	-					
Molybdenum (Mo)-Dissolved	mg/L	-					
Nickel (Ni)-Dissolved Phosphorus - Dissolved	mg/L mg/L	-					
Potassium (K)-Dissolved	mg/L	-					
Rubidium (Rd) - Dissolved Selenium (Se)-Dissolved	mg/L mg/L	-					
Silicon - Dissolved Silver (Ag)-Dissolved	mg/L mg/L	-	<u> </u>	<u> </u>			
Sodium (Na)-Dissolved	mg/L	-					
Strontium - Dissolved Sulfur- Dissolved	mg/L mg/L	-					
Tellurium - Dissolved	mg/L	-					
Thallium (Tl)-Dissolved Thorium - Dissolved	mg/L mg/L	<u>-</u> -					
Tin (Sn)-Dissolved Titanium (Ti)-Dissolved	mg/L	-					
Tungston (W) - Dissolved	mg/L mg/L	-					
Uranium (U)-Dissolved Vanadium (V)-Dissolved	mg/L mg/L	-	<u> </u>	<u> </u>			
Zinc (Zn)-Dissolved	mg/L	-					
Zirconium - Dissolved	mg/L	-					

OC Criteria

Shaded Value Means Exceede

Table 2: Groundwater Quality Results Sampling Location MW-2 (E251531)

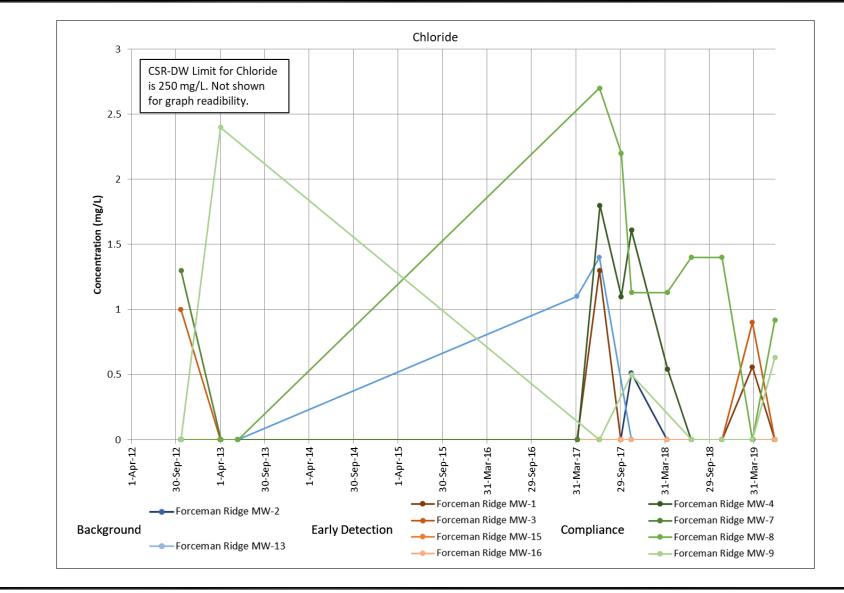

	I	BC MoE Guidelines	22-Oct-12	02-Apr-13	02-Oct-17	14-Nov-17	10-Apr-18	19-Jul-18	20-Nov-18	27-Mar-19	26-Jun-19
			22 011 12	02 Apr 10	02 000 17	111(0) 17	10 лр. 10	15 041 10	20110710	27 19	20 0411 19
Field Conductivity	Units uS/cm	CSR-DW (2)	-	-	29.1	29.9	28	49	57	36	50
рН	pН	-	-	-	6.36	6.31	5.84	5.97	6.48	7.02	6.57
Dissolved Oxygen Temperature	mg/L °C	-	-	-	9.7 4.3	4.5	9.2 4	8.2 4	4.4	8.4 4.4	9.7 4.6
Water elevation	m	-	-	-	-	-	45.79	44.54	46.83	46.12	46.54
Analyte Conductivity	Units uS/cm	-	18.8	-	-					-	-
Hardness (as CaCO3)	mg/L	-	- 7	7.42	24.7	- 721	17.8	22.8	25.9	21.9	22.0 7.08
pH Total Suspended Solids	pH mg/L	-	-	-	6.6 270	7.21	7.43			7.22	- 7.08
Total Dissolved Solids Alkalinity, Total (as CaCO3)	mg/L	-	9	- 12	24 24		22.2	21.1	25.2	22.6	27.2
Ammonia, Total (as CaCO3)	mg/L mg/L	-	12.6 0.06	13	< 0.03	<0.0050	<0.0050	31.1 0.0058	0.0134	0.0117	<0.0050
Total Nitrogen as N	mg/L	-	0.317	-	0.383				< 0.050	<0.050	<0.050
Bromide (Br) Chloride (Cl)	mg/L mg/L	250 ⁽²⁾	ND	ND	<1	0.51	< 0.50	< 0.50	<0.050	<0.050	<0.050
Fluoride (F)	mg/L	1.5 (2)	ND	ND	<0.1	-	0.021	0.027	0.023	0.049	0.025
Nitrate (as N)	mg/L	10 (2)	ND	ND	< 0.01	0.212	0.227	0.227	0.227	< 0.0050	0.21
Nitrite (as N)	mg/L	1.0 (2)	ND	ND	<0.1	-	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010
Sulfate (SO4) Total Organic Carbon	mg/L mg/L	500 ⁽²⁾	-	1.3 ND	1.3	1.13	1.03 0.85	1.06 8.43	0.98 6.4	0.55 3.85	1.04
BOD	mg/L		-	-	-	-				-	-
COD Dissolved Metals	mg/L	-	-	-	-	-	37	49	28	<20	<20
Aluminum (Al)-Dissolved	mg/L	9.5 (2)	ND	ND	< 0.005	0.0015	0.0015	0.002	0.0047	0.003	0.0028
Antimony (Sb)-Dissolved	mg/L	0.006 ⁽²⁾	ND	ND	< 0.0002	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010
Arsenic (As)-Dissolved	mg/L	0.01 ⁽²⁾	ND 0.0018	0.000048 0.0014	0.0005	<0.00010 0.0192	< 0.00010	<0.00010	<0.00010	< 0.00010	< 0.00010
Barium (Ba)-Dissolved Beryllium (Be)-Dissolved	mg/L mg/L	1.0 ⁽²⁾ 0.008 ⁽²⁾	0.0018 ND	0.0014 ND	0.0085 <0.0001	<0.0010	0.00867 <0.00010	0.0092 <0.00010	0.00828 <0.00010	0.00967 <0.00010	0.0114 <0.00010
Bisumuth - Dissolved	mg/L mg/L	-	ND	ND	<0.0001	< 0.000050	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Boron (B)-Dissolved	mg/L	5.0(2)	ND	ND	< 0.005	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Cadmium (Cd)-Dissolved Calcium (Ca)-Dissolved	mg/L mg/L	0.005 ⁽²⁾	0.000074	ND -	0.000014 5.99	0.0000129	0.000029 6.12	0.0000234 7.75	0.00008 8.8	0.0000456 7.58	0.0000367 7.58
Cesium (Cs) - Dissolved	mg/L	-	-	-	/	-	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Chromium (Cr)-Dissolved	mg/L	0.05 - 6.0 (2)	ND	ND 0.00002	< 0.0005	<0.00010	< 0.00010	< 0.00010	0.00011	0.00012	< 0.00010
Cobalt (Co)-Dissolved Copper (Cu)-Dissolved	mg/L mg/L	0.001 ⁽²⁾ 1.5 ⁽²⁾ AO	ND 0.00071	0.00003 ND	0.00012 <0.0004	0.00016 <0.00020	0.00014	0.00015	<0.00010 0.00034	0.00024	0.00032
Iron (Fe)-Dissolved	mg/L mg/L	1.5 ⁽²⁾ AO 6.5 ⁽²⁾	0.000/1 ND	0.953	<0.0004	0.060	<0.00020 0.074	<0.00020 <0.010	0.00034	<0.00020 0.048	<0.00020 0.125
Lead (Pb)-Dissolved	mg/L	0.01 ⁽²⁾	ND	ND	<0.0002	<0.000050	<0.000050	<0.00050	<0.00050	<0.000050	<0.000050
Lithium (Li)-Dissolved	mg/L	0.008 (2)	ND	ND	0.00012	<0.0010	<0.0010	<0.0010	<0.0010	< 0.0010	< 0.0010
Magnesium (Mg)-Dissolved Manganese (Mn)-Dissolved	mg/L mg/L	1.5 (2)	0.118 0.137	ND 0.153	0.763 0.0313	0.658 0.0461	0.62	0.832 0.0613	0.956 0.0495	0.724 0.0508	0.741 0.0613
Mercury (Hg)-Dissolved	mg/L	0.001 ⁽²⁾	ND	0.133 ND	<0.0001	<0.000050	<0.000050	<0.000050	<0.000050	0.000074	<0.000050
Molybdenum (Mo)-Dissolved	mg/L	0.25(2)	ND	0.000125	< 0.0001	0.000062	<0.000050	< 0.000050	<0.000050	<0.000050	< 0.000050
Nickel (Ni)-Dissolved	mg/L	0.08 (2)	-	-	0.00055	0.00059	0.00073	0.00061	0.00071	0.00055	0.00054
Phosphorus - Dissolved Potassium (K)-Dissolved	mg/L mg/L	-	-	-	<0.05 0.35	<0.050	<0.050 0.367	<0.050 0.423	<0.050 0.444	<0.050 0.393	<0.050 0.411
Rubidium (Rb) - Dissovled	mg/L	-	-	-		-	0.00036	0.0005	0.0005	0.00042	0.00043
Selenium (Se)-Dissolved Silicon - Dissolved	mg/L mg/L	0.01 (2)	ND 0.276	ND 0.156	<0.0005 6.1	<0.000050 5.66	<0.000050 5.7	<0.000050 5.62	<0.000050 5.54	<0.000050 6.09	<0.000050 5.75
Silver (Ag)-Dissolved	mg/L	0.02 (2)	0.276 ND	0.136 ND	<0.00005	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010	<0.000010
Sodium (Na)-Dissolved	mg/L	200 ⁽²⁾	1.89	1.64	1.66	2.03	1.6	1.64	1.71	1.64	1.68
Strontium - Dissolved Sulfur- Dissolved	mg/L mg/L	-	0.0185	0.0193	0.0417	0.0432 <0.50	0.0483 <0.50	0.0557 <0.50	0.0483 <0.50	0.0536 <0.50	0.058 <0.50
Tellurium - Dissolved	mg/L mg/L	-	-	-	<0.0005	<0.0020	<0.00020	<0.00020	<0.0020	<0.00020	<0.00020
Thallium (Tl)-Dissolved Thorium - Dissolved	mg/L	-	-	-	<0.00002 <0.0001	<0.000010 <0.00010	<0.000010 <0.00010	<0.000010 <0.00010	<0.000010 <0.00010	<0.000010 <0.00010	<0.00010 <0.00010
Tin (Sn)-Dissolved	mg/L mg/L	2.5 (2)	- ND	- ND	<0.0001	<0.00010	<0.00010	<0.00010	0.00028	<0.00010	<0.00010
Titanium (Ti)-Dissolved	mg/L	-	-	-	< 0.005	-	< 0.00030	< 0.00030	< 0.00030	< 0.00030	< 0.00030
Tungsten (W) - Dissovled Uranium (U)-Dissolved	mg/L mg/L	0.003 ⁽²⁾ 0.020	- ND	- ND	<0.00002	<0.00010	<0.00010 <0.000010	<0.00010 <0.000010	<0.00010 <0.000010	<0.00010 <0.000010	<0.00010 <0.000010
Vanadium (V)-Dissolved	mg/L mg/L	0.020	ND ND	ND ND	<0.001	<0.00050	<0.00010	<0.00050	<0.00050	<0.00010	<0.00050
Zinc (Zn)-Dissolved	mg/L	3.0 (2)	ND	ND	< 0.004	0.0013	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.001
Zirconium - Dissolved Volatile Organic Compounds (Water)	mg/L	-	ND	ND -	<0.0001	<0.000060	<0.000060	<0.000060	<0.000060	<0.000060	<0.00020
Benzene	mg/L	0.005 (2)	-	-	-	-	-	-	-	-	-
Bromodichloromethane	mg/L	0.1 ⁽²⁾	-	-	-	-	-	-	-	-	-
Bromoform	mg/L	0.1 ⁽²⁾	-	-	-	-	-	-	-	-	-
Carbon Tetrachloride Chlorobenzene	mg/L mg/L	$0.002^{(2)}$ $0.08^{(2)}$	-	-	-	-	-	-	-	-	-
Dibromochloromethane	mg/L	0.1 ⁽²⁾	-	-	-	-	-	-	-	-	-
Chloroethane	mg/L	-	-	-	-	-	-	-	-	-	-
Chloroform Chloromethane	mg/L mg/L	0.1 ⁽²⁾	-	-	-	-	<u>-</u>	-	-	-	-
1,2-Dichlorobenzene	mg/L mg/L	0.2 ⁽²⁾	-	-	-	-	-	-	-	-	<u> </u>
1,3-Dichlorobenzene	mg/L	- 0.005(2)	-	-	-	-	-	-	-	-	-
1,4-Dichlorobenzene 1,1-Dichloroethane	mg/L mg/L	$0.005^{(2)}$ $0.03^{(2)}$	-	-	-	-	-	-	-	-	-
1,1-Dichloroethane	mg/L mg/L	0.005 ⁽²⁾	-	-	-	-	-	-	-	-	-
1,1-Dichloroethylene	mg/L	0.014 ⁽²⁾	-		-	-		-	-	-	-
cis-1,2-Dichloroethylene	mg/L	0.008 ⁽²⁾	-	-	-	-	-	-	-	-	-
trans-1,2-Dichloroethylene	mg/L	$0.08^{(2)}$ $0.05^{(2)}$	-	-	-	-	-	-	-	-	-
Dichloromethane 1,2-Dichloropropane	mg/L mg/L	0.05 ⁽²⁾ 0.0045 ⁽²⁾	-	-	-	-	-	-	-	-	-
cis-1,3-Dichloropropylene	mg/L	-	-	-	-	-	-	-	-	-	-
trans-1,3-Dichloropropylene 1,3-Dichloropropene (cis & trans)	mg/L mg/L	0.0015 ⁽²⁾	-	-	-	-	-	-	-	-	-
Ethylbenzene	mg/L mg/L	0.0015 ⁽²⁾	-	-	-	-	-	-	-	-	-
Methyl t-butyl ether (MTBE)	mg/L	0.095 ⁽²⁾	<u> </u>	-	-	-	-		-	-	-
Styrene	mg/L	0.8 ⁽²⁾	-	-	-	-	-	-	-	-	-
1,1,2-Tetrachloroethane	mg/L	0.006 ⁽²⁾	-	-	-	-	-	-	-	-	-
1,1,2,2-Tetrachloroethane Tetrachloroethylene	mg/L mg/L	0.008 ⁽²⁾ 0.03 ⁽²⁾	-	-	-	-	-	-	-	-	-
Toluene	mg/L	0.06 ⁽²⁾	-	-	-	-	-	-	-	-	-
1,1,1-Trichloroethane	mg/L	8 ⁽²⁾	-	-	-	-	-	-	-	-	-
1,1,2-Trichloroethane	mg/L	0.003 ⁽²⁾	-	-	-	-	-	-	-	-	-
Trichloroethylene	mg/L	0.005 ⁽²⁾ 1 ⁽²⁾	-	-	-	-	-	-	-	-	-
Trichlorofluoromethane	mg/L	1 ⁽²⁾ 0.002 ⁽²⁾	-	-	-	-	-	-	-	-	-
	mø/L	0.00757									
Vinyl Chloride ortho-Xylene	mg/L mg/L	-	-	-	-	-	-	-	-	-	-
Vinyl Chloride				1		-	-	•			-

- (1) BC MoE Approved and Working Water Quality Guidelines, last updated March 2018
 (2) BC Contaminated Sites Regulation (CSR) for drinking water, Schedule 3.2, last updated January 2019
 (3) All criteria limits for BCWQG Drinking Quality Guidelines based on Total Metal Concentration except Aluminum (Dissolved)
 (4) BC MoE Water Quality Guidelines for Protection of Wildlife
 (a) Range based on max pH 8.5 to min pH 6.5 at temperature of 6.0 °C
 (b) at pH less than 6.5, limit is determined by regression equation, else limit is 0.1 mg/L.
 (c) Limit for dissolved metals, not total metals
 (d) Limit dependent upon hardness.
 (e) Limit for chromium(VI) data reported by lab as total chromium limit assumes 100% chromium VI in sample
 (f) Where hardness data was unavailable, 50 mg/L was assumed
 (g) Maximum value
 (h) Limit dependent upon chloride concentration
 (i) Change of 25 mg/L from background for a duration of 24 hours during clear flows. Change of 10% of background during turbid flows
- * Criteria exceeds detection limit MAC = Maximum Acceptable Concentration AO = Aesthetic Objective

CSR-DW

BC Contaminated Sites Regulation Water Quality Guidelines for Drinking Water

Appendix C: Graphs

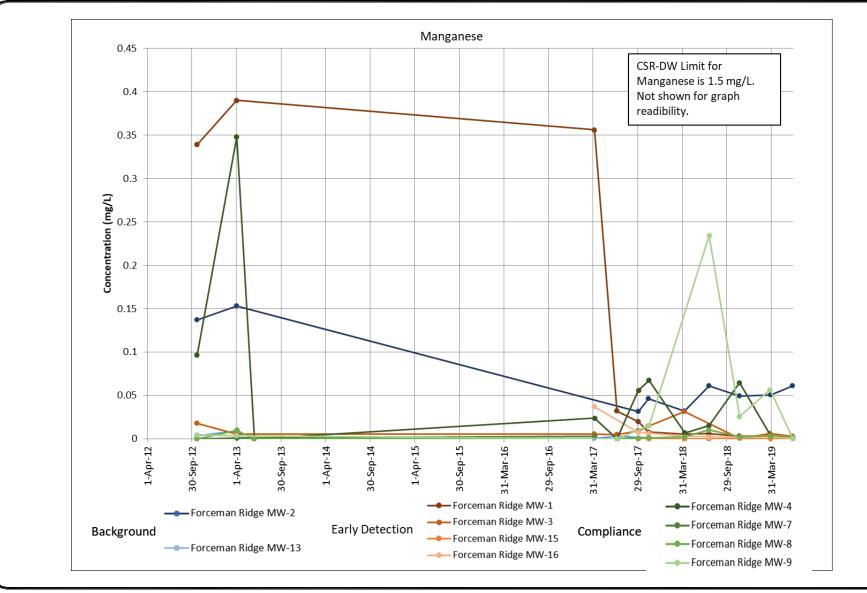


PROJECT:

Forceman Ridge WMF 2019 Annual Water Quality Monitoring Report TITLE:

Groundwater Conductivity

SCALE:	DATE:		PROJECT NO:
N/A		/02/26 /mm/dd	PRJ20009
DESIGNED	AM	DRAWING	S NO:
DRAWN	AM	(Graph 1
CHECKED	IB		

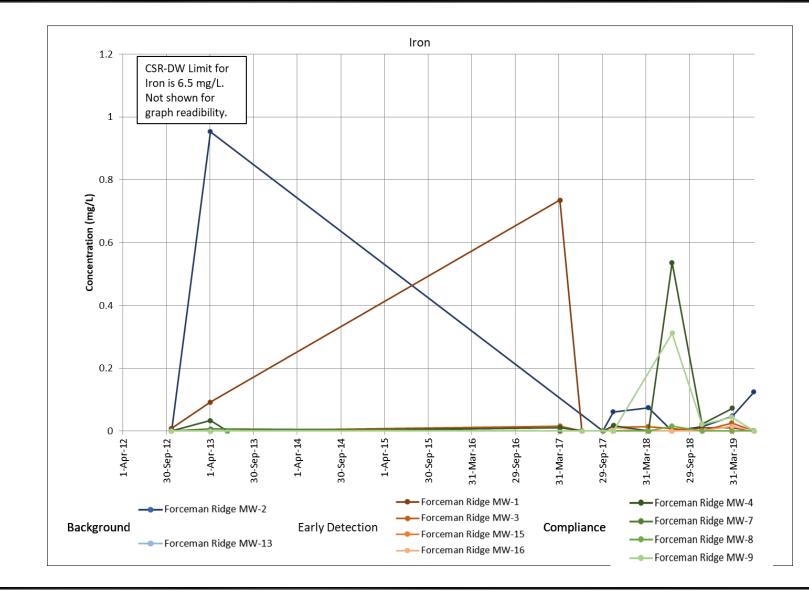


PROJECT:

Forceman Ridge WMF 2019 Annual Water Quality Monitoring Report TITLE:

Groundwater Chloride

SCALE:	DATE:		PROJECT NO:
N/A		/02/26 /mm/dd	PRJ20009
DESIGNED	AM	DRAWING	S NO:
DRAWN	AM	(Graph 2
CHECKED	IB	-	

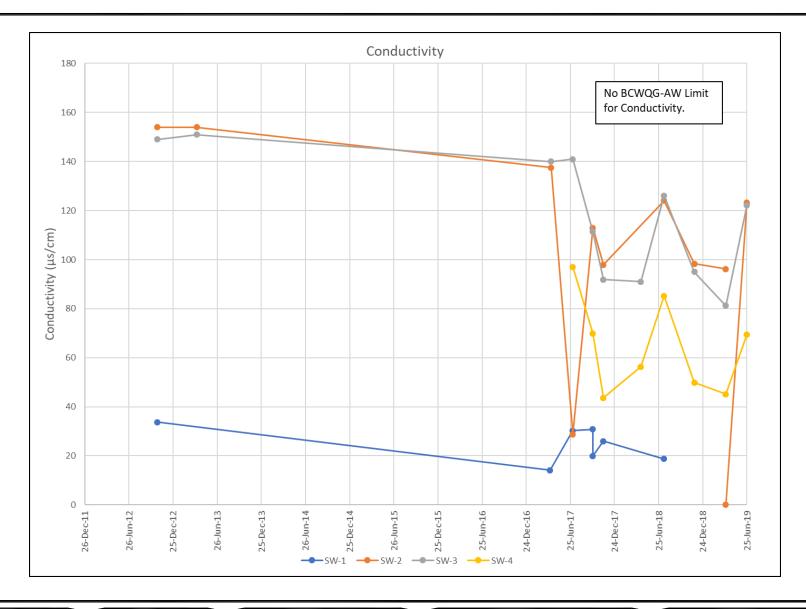


PROJEC.

Forceman Ridge WMF 2019 Annual Water Quality Monitoring Report TITLE:

Groundwater Dissolved Manganese

SCALE:	DATE:		PROJECT NO:
N/A		/02/26 /mm/dd	PRJ20009
DESIGNED	AM	DRAWING	S NO:
DRAWN	AM	(Graph 3
CHECKED	IB		

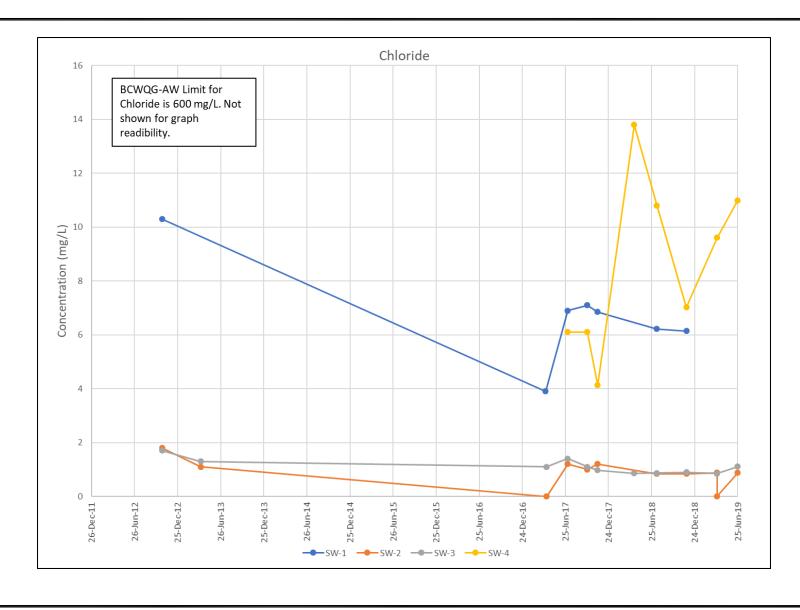


PROJEC[®]

Forceman Ridge WMF 2019 Annual Water Quality Monitoring Report TITLE:

Groundwater Dissolved Iron

SCALE:	DATE:		PROJECT NO:	1
N/A	2020/02/26 yyyy/mm/dd		PRJ20009	
DESIGNED	AM	DRAWING	S NO:	
DRAWN	AM		Graph 4	
CHECKED	IB		•	1

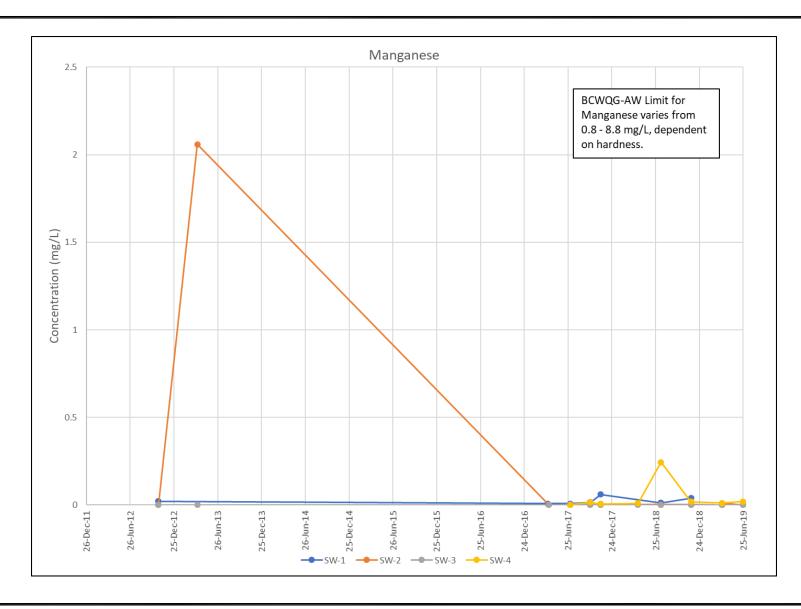


PROJEC1

Forceman Ridge WMF 2019 Annual Water Quality Monitoring Report TITLE:

Surface Water Conductivity

١.	SCALE:	DATE:		PROJECT NO:	1
ĺ	N/A		/02/26 /mm/dd	PRJ20009	
	DESIGNED	AM	DRAWING	S NO:	
	DRAWN	AM	(Graph 5	
,	CHECKED	IB			4

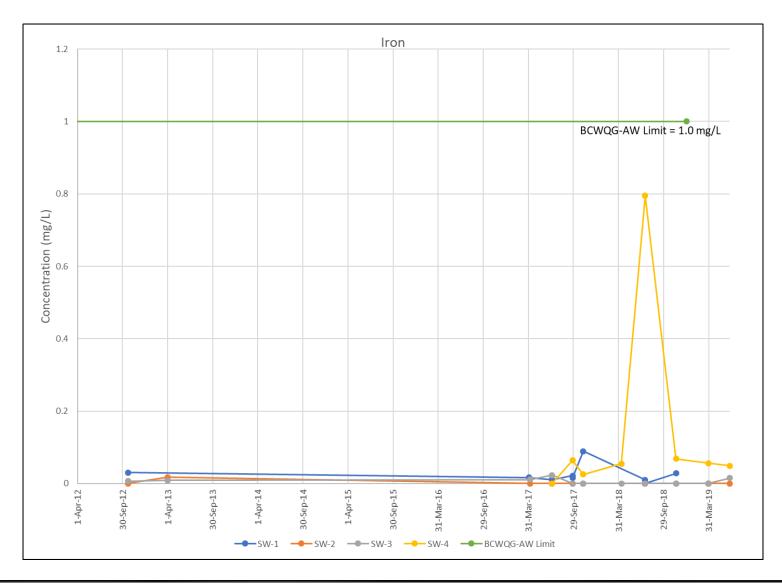


PROJEC.

Forceman Ridge WMF 2019 Annual Water Quality Monitoring Report TITLE:

Surface Water Chloride

_			
SCALE:	DATE:		PROJECT NO:
N/A	2020	/02/26	PRJ20009
DESIGNED	AM	DRAWING	S NO:
DRAWN	AM	(Graph 6
CHECKED	IB		

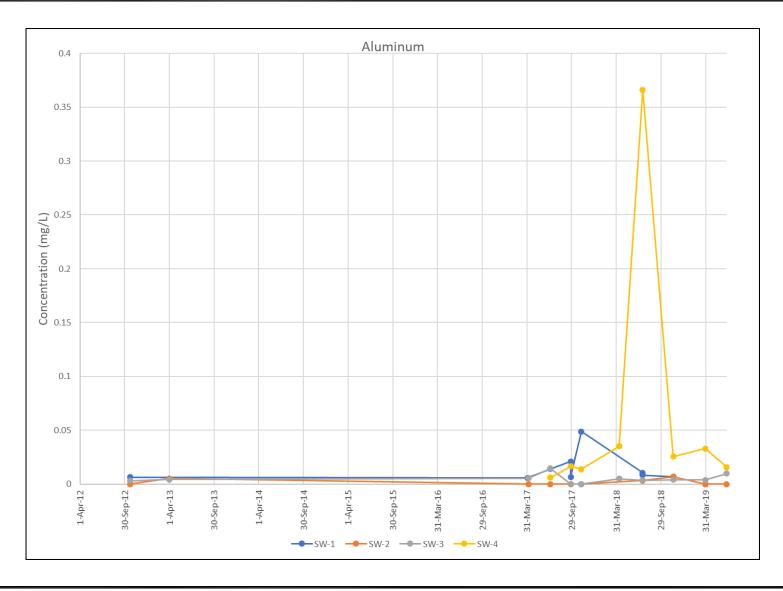


PROJEC.

Forceman Ridge WMF 2019 Annual Water Quality Monitoring Report TITLE:

Surface Water Total Manganese

				_
SCALE:	DATE:		PROJECT NO:	1
N/A	2020/02/26 yyyy/mm/dd		PRJ20009	
DESIGNED	AM	DRAWING	S NO:	
DRAWN	AM	(Graph 7	
CHECKED	IB			1

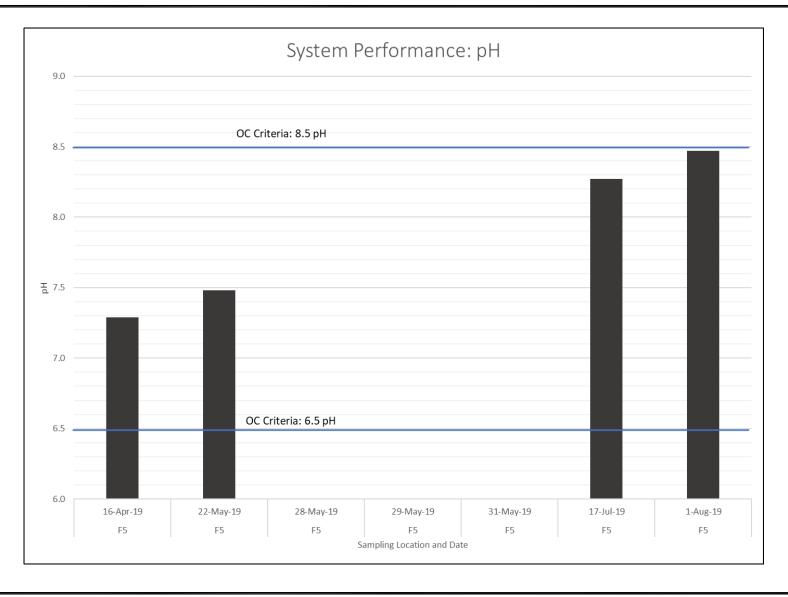


PROJEC1

Forceman Ridge WMF 2019 Annual Water Quality Monitoring Report TITLE:

Surface Water Total Iron

				_
SCALE:	DATE:		PROJECT NO:	1
N/A		/02/26 /mm/dd	PRJ20009	
DESIGNED	AM	DRAWING	S NO:	
DRAWN	AM	(Graph 8	
CHECKED	IB			

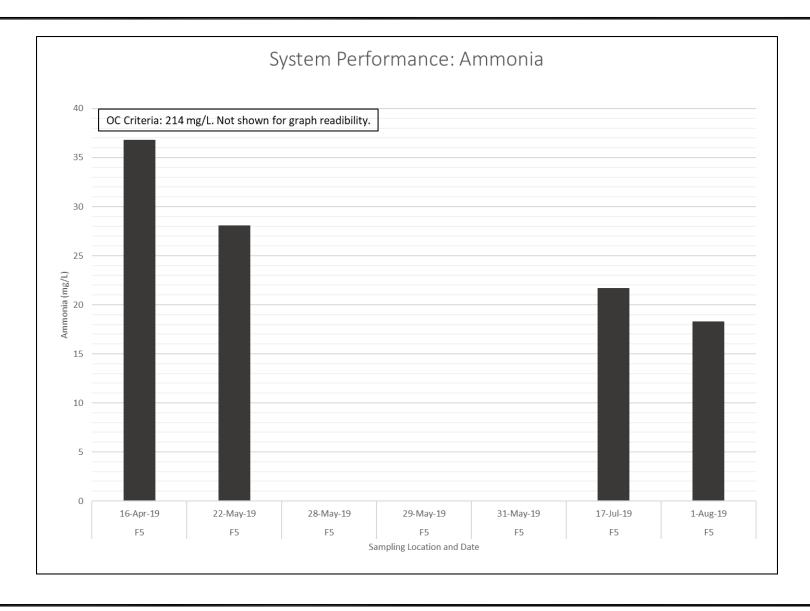


PROJEC[®]

Forceman Ridge WMF 2019 Annual Water Quality Monitoring Report TITLE:

Surface Water Total Aluminum

_				_
SCALE:	DATE:		PROJECT NO:	1
N/A		/02/26 /mm/dd	PRJ20009	
DESIGNED	AM	DRAWING	S NO:	
DRAWN	AM	(Graph 9	
CHECKED	IB			

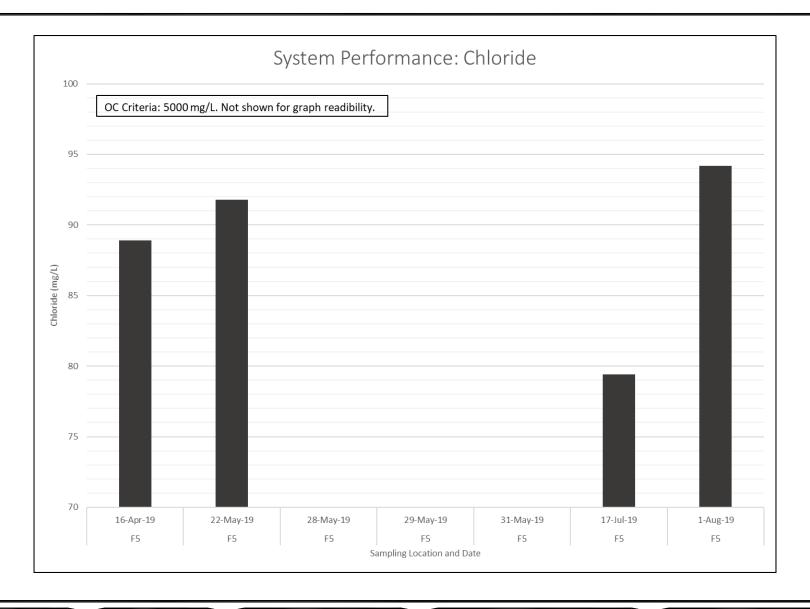


PROJECT:

Forceman Ridge WMF 2019 Annual Water Quality Monitoring Report TITLE:

System Performance: pH

h	SCALE:	DATE:		PROJECT NO:	•
Ì	N/A		/02/26 /mm/dd	PRJ20009	
ı	DESIGNED	AM	DRAWING	NO:	
	DRAWN	AM	G	raph 10	
Į	CHECKED	IB			



PROJEC.

Forceman Ridge WMF 2019 Annual Water Quality Monitoring Report TITLE:

System Performance: Ammonia

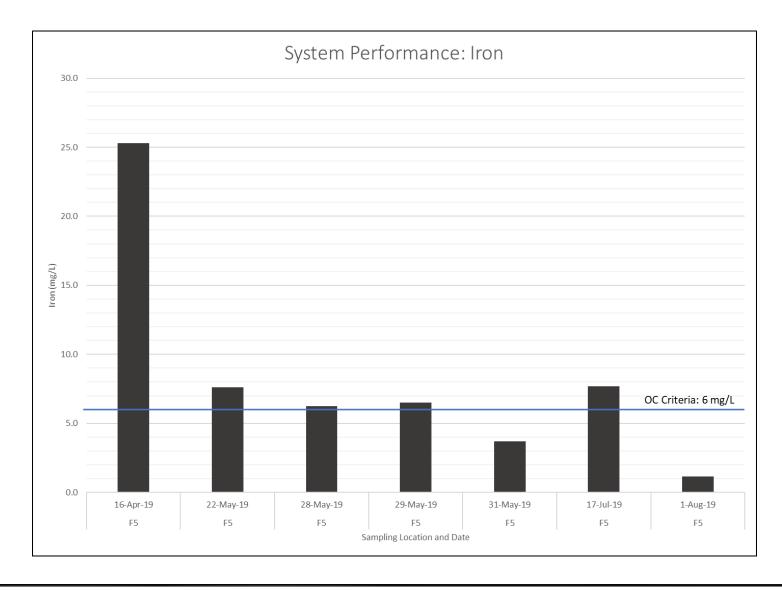
æ			
SCALE:	DATE:		PROJECT NO:
N/A		/02/26 /mm/dd	PRJ20009
DESIGNED	AM	DRAWING	S NO:
DRAWN	AM	G	raph 11
CHECKED	IB		

PROJECT

Forceman Ridge WMF 2019 Annual Water Quality Monitoring Report TITLE:

System Performance: Chloride

S	CALE:	DATE:		PROJECT NO:	1
	N/A		/02/26 /mm/dd	PRJ20009	
DE	SIGNED	AM	DRAWING	NO:	
DI	RAWN	AM	G	raph 12	
CI	HECKED	IB			_

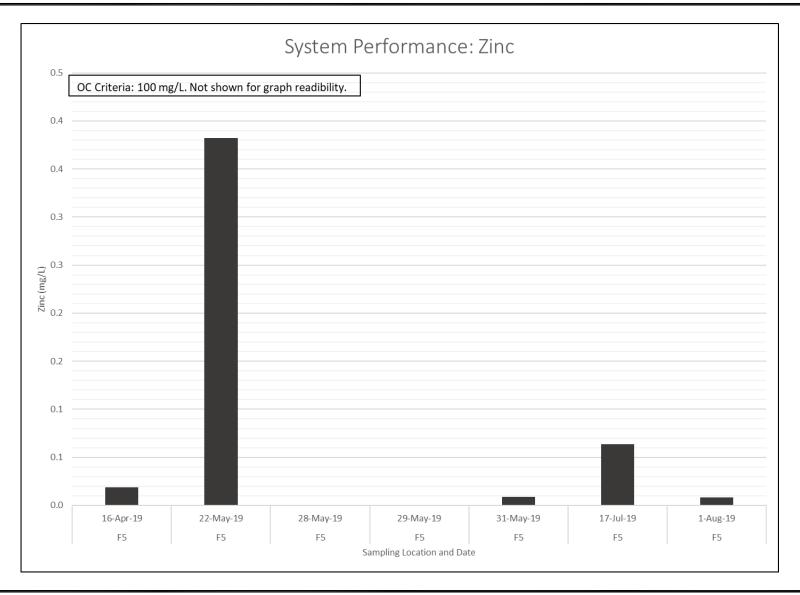


PROJEC1

Forceman Ridge WMF 2019 Annual Water Quality Monitoring Report TITLE:

System Performance: Cadmium

				_
SCALE:	DATE:		PROJECT NO:	
N/A		/02/26 /mm/dd	PRJ20009	
DESIGNED	AM	DRAWING	S NO:	
DRAWN	AM	G	raph 13	
CHECKED	IB			l



PROJECT:

Forceman Ridge WMF 2019 Annual Water Quality Monitoring Report TITLE:

System Performance: Iron

SCALE:	DATE:		PROJECT NO:
N/A	2020/02/26 yyyy/mm/dd		PRJ20009
DESIGNED	AM	DRAWING	S NO:
DRAWN	AM	G	raph 14
CHECKED	IR	_	

PROJEC.

Forceman Ridge WMF 2019 Annual Water Quality Monitoring Report TITLE:

System Performance: Zinc

_			
SCALE:	DATE:		PROJECT NO:
N/A	2020/02/26 yyyy/mm/dd		PRJ20009
DESIGNED	AM	DRAWING NO:	
DRAWN	AM	Graph 15	
CHECKED	IB		

Appendix D: Amended Operational Certificate 17227 (September 19, 2019)

September 19, 2019

Tracking Number: 385635 Authorization Number: 17227

REGISTERED MAIL

REGIONAL DISTRICT OF KITIMAT-STIKINE 300 4545 LAZELLE AVENUE TERRACE, BC V8G 4E1

KITIMAT-STIKINE

Dear Operational Certificate Holder:

Enclosed is Amended Operational Certificate 17227 issued under the provisions of the *Environmental Management Act*. Your attention is respectfully directed to the terms and conditions outlined in the operational certificate. An annual fee will be determined according to the Permit Fees Regulation.

This operational certificate does not authorize entry upon, crossing over, or use for any purpose of private or Crown lands or works, unless and except as authorized by the owner of such lands or works. The responsibility for obtaining such authority rests with the operational certificate holder. It is also the responsibility of the operational certificate holder to ensure that all activities conducted under this authorization are carried out with regard to the rights of third parties, and comply with other applicable legislation that may be in force.

The Director may require the Permittee to repair, remove, or add to existing works, or to construct new works, and to submit plans and specifications for works specified in this authorization.

The Director may require the Permittee to conduct additional monitoring, and may specify procedures for monitoring, analysis, and procedures or requirements respecting the handling, treatment, transportation, discharge or storage of waste.

This decision may be appealed to the Environmental Appeal Board in accordance with Part 8 of the *Environmental Management Act*. An appeal must be delivered within 30 days from the date that notice of this decision is given. For further information, please contact the Environmental Appeal Board at (250) 387-3464.

Date: September 19, 2019

Administration of this operational certificate will be carried out by staff from the Authorizations - North Region. Plans, data and reports pertinent to the operational certificate are to be submitted to the Regional Manager, Environmental Protection, at Ministry of Environment and Climate Change Strategy, Regional Operations, Authorizations - North Region, Suite 325 - 1011 4th Avenue, Prince George BC V2L 3H9.

Yours truly,

Karen Moores, P.Ag. for Director, *Environmental Management Act* Authorizations - North Region

MINISTRY OF ENVIRONMENT AND CLIMATE CHANGE STRATEGY

OPERATIONAL CERTIFICATE

17227

for the

FORECEMAN RIDGE LANDFILL

Under the Provisions of the Environmental Management Act and in Accordance with the Regional District of Kitimat-Stikine's Solid Waste Management Plan

REGIONAL DISTRICT OF KITIMAT-STIKINE

300 4545 LAZELLE AVENUE TERRACE, BC V8G 4E1

is authorized to store, handle, treat and discharge municipal waste at a sanitary landfill facility located near Forceman Ridge approximately 30 km south of Terrace, British Columbia, subject to the terms and conditions listed below. Contravention of any of these conditions is a violation of the *Environmental Management Act* and may result in prosecution.

Capitalized terms referred to in this authorization are defined in the attached Glossary. Other terms used in this authorization have the same meaning as those defined in the *Environmental Management Act* and applicable regulations.

Where this authorization provides that the Director may require an action to be carried out, the Permittee must carry out the action in accordance with the requirements of the Director.

This Authorization supersedes and replaces all previous versions of Permit 17227 issued under Section 14 of the *Environmental Management Act*.

Date Issued: November 7, 2008 Date Amended: September 19, 2019

(most recent)

Low By

for Director, *Environmental Management Act* Authorizations - North Region

1. LOCATION OF LANDFILL PROPERTY

The location of the property where discharges are authorized to occur is described as District Lot 8128, Range 5, Coast District.

2. AUTHORIZED DISCHARGES

2.1. Municipal Solid Waste

This section applies to the discharge of municipal solid waste to ground. The site reference number for this discharge is E249849.

2.1.1. Quantity of Discharge

The quantity of solid wastes discharged to ground shall not exceed the design capacity of the landfill facility specified as follows: (1) by an engineered final design footprint (see section 3.3); and (2) by engineered excavation and final grade contours (see section 3.4).

2.1.2. Characteristics of the Discharge

Subject to sections 6.2, 6.3 and 6.4, the characteristics of the discharge shall be typical of municipal solid waste.

2.1.3. Authorized Works

The authorized works are a separate municipal solid waste disposal area and related appurtenances located approximately as shown on the attached site plan.

2.2. Open Burning Air Contaminants

This section applies to the discharge of air contaminants to the atmosphere from the regulated open burning of selected combustibles. The site reference number for this discharge is E249850.

2.2.1. Quantity of Discharge

The maximum authorized quantity of discharge of air contaminants is indeterminate.

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region

2.2.2. Characteristics of the Discharge

The characteristics of the discharge shall be typical of those resulting from the regulated open burning of selected combustibles as per section 11.3.

2.2.3. Authorized Works

The authorized works are a separate burn area associated with a landfill operation and related appurtenances located approximately as shown on the attached Site Plan.

2.3. <u>Liquid Wastes</u>

This section applies to the discharge of selected liquid wastes to the ground. The site reference number for this discharge is E249851.

2.3.1. Quantity of Discharge

The maximum authorized quantity of discharge is indeterminate.

2.3.2. Characteristics of the Discharge

The characteristics of the discharge shall be those typical of septic tank pumpage, holding tank effluent, sewage treatment plant sludges, and wash water and grit from drain sumps at car and light truck wash facilities and parking lots.

2.3.3. Authorized Works

The authorized works are liquid waste storage and treatment lagoons and related appurtenances located approximately as shown on the attached Site Plan.

2.4. Leachate

This section applies to the discharge of leachate to a phytoremediation area. The site reference number for this discharge is E249852.

2.4.1. Quantity of Discharge

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region

The maximum authorized rate of discharge is 609 m³/day and the average rate of discharge is 400 m³/day. The discharge may occur 24 hours/day, 7 days/week during the months of April to October inclusive.

2.4.2. Characteristics of the Discharge

The characteristics of treated leachate shall not exceed the following limits:

Total Nitrogen	300 mg/L	
Ammonia	214 mg/L	
pН	6.5 to 8.5	
Chloride	5000 mg/L	
Total iron	6 mg/L	
Total zinc	100 mg/L	
Total cadmium	0.1 mg/L	

2.4.3. Authorized Works

The authorized works are leachate collection and treatment facilities including an equalization basin, aeration lagoon, sedimentation pond, sand filter and hybrid poplar plantation and related appurtenances located approximately as shown on the attached Site Plan.

3. LANDFILL DESIGN

3.1. Design by Qualified Professional(s)

The landfill and associated works [including but not limited to the size(s) and location(s) of disposal area(s), maximum allowable slopes of disposal area(s), leachate management system, progressive and final closure details, etc.] shall be designed by qualified professionals [such as

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

> for Director, Environmental Management Act Authorizations - North Region

engineer(s) and/or geoscientist(s)] registered in the Province of British Columbia who have expertise in the field of landfill design. Where a design feature prepared by a qualified professional is in conflict with any requirement of this operational certificate, it shall be brought to the attention of the Director who shall determine a resolution to the conflict.

3.2. Construction

The landfill and associated works shall be constructed in accordance with the design prepared by qualified professionals.

3.3. Engineered Footprint

The landfill design shall include preparation of an engineered final design footprint delineating the maximum extent of solid waste disposal allowable at the facility horizontally (in plan view). The engineered final design footprint shall be clearly shown on a scaled plan of the site and the plan shall be made available in an electronic format as a computer aided design (CAD) drawing.

3.4. Engineered Excavation and Final Grade Contours

The landfill design shall include preparation of engineered excavation grade (if below grade landfilling is to occur) and final grade contours delineating the maximum extent of solid waste disposal allowable at the facility vertically (in cross-sectional view). The engineered excavation and final grade contours shall be clearly shown on scaled drawings (accompanied with typical cross sections to aid in depicting the landfill profile) and the drawings shall be made available in an electronic format as computer aided design (CAD) drawings.

4. <u>LANDFILL GAS MANAGEMENT</u>

4.1. Lower Explosive Limit

The landfill shall be operated such that combustible gas concentrations do not exceed the lower explosive limit in soils at the property boundary or 25% of the lower explosive limit in any on-site or off-site structure or facility, including any services (water, sewer, electrical, etc.).

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region

5. LEACHATE MANAGEMENT REQUIREMENTS

5.1. Leachate Containment

The operational certificate holder shall ensure that leachate is contained through the use of a barrier system. The barrier system shall consist of a minimum of 2 metres of natural, *in-situ* clay with a hydraulic conductivity of 1×10^{-6} cm/s or less. Alternatively, an engineered barrier may be used provided it is equivalent to or better than the natural clay barrier specified above. The actual specifications of the leachate containment system shall be set out in the detailed engineering design.

5.2. Leachate Collection

A continuous drainage blanket shall be established beneath all landfill phases. The drainage blanket shall consist of, or be equivalent to, a minimum 300 mm thick layer of clean gravel with an effective hydraulic conductivity exceeding 1×10^{-1} cm/s. The leachate collection system shall be designed such that the hydraulic head on top of the barrier layer does not exceed 300 mm at any time.

5.3. Protection Against Clogging

The drainage layer shall be protected against sedimentation and biochemical clogging. Under no circumstances shall leachate piping or leachate collectors be wrapped in geotextile.

6. GENERAL REQUIREMENTS

6.1. Site Identification

A sign shall be erected at the main entrance to the site which identifies the following: site name, owner and operator, contact phone number and address, tipping fees (if applicable) and prohibited wastes. The lettering on the sign shall be such that it is clearly readable upon approach.

6.2. Prohibited Wastes

No wastes as defined by the *Hazardous Waste Regulation* shall be received, stored or disposed of at this site except as authorized by the Director. Lead-acid batteries shall not be landfilled but may be salvaged/recycled provided they are stored, handled and shipped in compliance with the *Hazardous Waste Regulation* and with section 10 of

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

> for Director, *Environmental Management Act* Authorizations - North Region

this operational certificate. Tires equal to or less than 43.2 centimetres (17") in rim size and auto hulks shall not be landfilled.

6.3. Waste Asbestos

Notwithstanding section 6.2 of this operational certificate, the disposal of waste asbestos under section 2.1 of this operational certificate and in compliance with the requirements of the *Hazardous Waste Regulation* is hereby authorized.

6.4. <u>Contaminated Soil</u>

Soil that contains contaminants in concentrations less than "hazardous waste" as defined by the *Hazardous Waste Regulation* may be disposed at the landfill site. Disposal includes monofilling, co-disposal with other wastes, use as a refuse cell berm material and use as a refuse cell cover material. Disposal must occur within a disposal area as authorized by sections 7 and 8 of this operational certificate. Disposal does not include use as final cover material.

6.5. Waste Measurement

The quantity of waste material landfilled at the site shall be measured using a weigh scale or by volume or estimated by means suitable to the Director. The results shall be submitted once per year on or before June 30 for the previous year expressed in tonnes/yr and/or m³/yr.

6.6. Ozone Depleting Substances

Release of ozone depleting substances from the storage, handling and disposal of used refrigerator equipment, freezers, motor vehicle air conditioners and other air conditioning equipment, fire extinguishers or other equipment containing ozone depleting substances is strictly forbidden as per the requirements of the *Ozone Depleting Substances and other Halocarbons Regulation*.

6.7. Fire Prevention

The operational certificate holder shall make all reasonable efforts to prevent unauthorized fires from occurring at the landfill site. As a minimum, a fire break clear of all combustible materials at least 15 metres wide shall surround all disposal, treatment and individual storage areas

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

> for Director, Environmental Management Act Authorizations - North Region

which have received or are receiving combustible materials. Disposal areas that have had 30 cm of compacted mineral soil cell cover or final cover applied are exempt. Water supply and pumping capabilities and/or soil and earth moving equipment shall be maintained at a sufficient level to extinguish fires. In addition, reasonable efforts shall include, but are not necessarily limited to, the preparation of a fire prevention and response plan.

6.8. Extinguishment of Fires

In the event of an unauthorized fire (including any smouldering fire), the operational certificate holder shall immediately make all reasonable efforts to extinguish the fire. Any fire which poses a threat to public health or to neighbouring property shall be reported to Emergency Management BC at 1-800-663-3456, the local fire authority, and/or the BC Wildfire Service at 1-800-663-5555.

6.9. Buffer Zone

No material shall be landfilled within 50 metres of the property boundary.

6.10. Litter Control

The operational certificate holder shall make all reasonable efforts to prevent litter from scattering. Any litter scattered on neighbouring property shall be cleaned up as soon as practicable.

6.11. Water Table Restriction

Wastes shall not be deposited or stored less than 1.2 metres above the highest groundwater level.

6.12. Inert Materials

Specific inert materials may be exempted from the requirements of section 6.11 by the Director. The permission of the Director must be obtained in writing prior to any disposal or handling of inert materials on an exemption basis.

6.13. Bear-Proof Containment of Putrescibles

All putrescible wastes that arrive at the landfill facility must be

Date Issued: November 7, 2008
Date Amended: September 19, 2019
(most recent)

for Director, *Environmental Management Act* Authorizations - North Region

immediately contained within a bear-proof bin (i.e. on-site transfer station of bear-proof design and construction) or within an area enclosed by an electric fence. Grass, leaves, weeds, branches and ground wood waste are not considered putrescible for the purposes of this operational certificate.

6.14. Electric Fencing

6.14.1. Design, Construction and Maintenance

Wherever required, electric fencing and gate systems at the landfill shall be designed, constructed, and maintained such that bears are prevented from entering into the landfill through any portion of the fence or gates at any time of the day.

6.14.2. <u>Fence Type</u>

Fencing may be either high tensile smooth wire or fence fabric (e.g., mesh-wire, page-wire or chain link). The configuration of a high tensile smooth wire fence shall consist of a minimum of eight strands, with four energized strands alternating with four grounded strands as follows: the bottom strand shall be a grounded or (-) strand and shall not be more than 10 cm from the ground (soil) at any location; and thence starting from the bottom strand, the other seven strands shall be spaced 15 ± 2 cm, 15 ± 2 cm, 15 ± 2 cm, 20 ± 2 cm, 20 ± 2 cm, 20 ± 2 cm, and 25 ± 2 cm. Additional strands to this minimum configuration may be used.

A fence fabric may be used instead of high tensile smooth wire. The fence fabric shall: be a minimum of 1.22 metre high; be constructed of a minimum wire thickness of 11 gauge, and have a maximum mesh size of 15 cm. The bottom of the fabric shall not be more than 10 cm from the ground (soil) at any location. Any uncharged fence fabric must have a minimum of four strands of charged wires on an outrigger system, spaced as follows: the first strand shall not be higher than 25 cm from the ground; and each of the remaining three strands shall be spaced approximately 25 cm apart from adjacent charged strands.

6.14.3. Wire Tension

For a high tensile smooth wire fence construction, all strands shall be tightened to a minimum of 125 lbs tension at 20°C. The required tension is to be corrected for temperature by use of the following

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region

formula for 12-1/2 gauge high tensile steel wire:

Tension = 125 - 2.5 (Temperature - 20)

where: Tension is in lbs force

Temperature is in °C

6.14.4. Post Spacing

Fence posts shall be spaced a maximum of 7.5 metres apart.

6.14.5. Grounding System

A grounding system shall be installed consisting of solid grounding rods (i.e., not pipe) with a minimum diameter of 16 mm (5/8 inch) that have a buried length of at least 2 metres. A minimum of three grounding rods (spaced at least 3 metres apart) shall be installed and connected to the energizer. Alternative energizer grounding systems (e.g., grounding plates, or a deep-driven grounding system) may be used provided the grounding is equivalent to or better than three grounding rods. A grounding rod (or equivalent) shall be installed at least once every 450 metres along the fence and connected to the grounded wire strands or uncharged fence fabric. Additional grounding may be required for dry sites or if other conditions affect proper grounding.

6.14.6. Period of Operation

Electric fencing shall be fully operational during the period of April 1 to October 31 inclusive each year and at any other time of year when there is bear activity in the immediate surrounding area. If snow is present during this period, any electrified strands above snow line shall be isolated from the remainder of the system and energized.

6.14.7. Minimum Voltage

Electric fencing shall be operated with a minimum voltage of 6,000 volts.

6.14.8. Gate(s)

Any access through electric fencing for vehicles, equipment and

Date Issued: November 7, 2008

Date Amended: September 19, 2019
(most recent)

for Director, Environmental Management Act Authorizations - North Region

personnel shall consist of an electrified gate system that is closed during non-operating hours. The gate system shall be electrified to a minimum voltage of 6,000 volts at all times except when being opened or closed. Any gate that is open during operating hours shall be periodically checked by the attendant for bear activity during hours of operation. Gaps between the gate and the fence and ground, and between gate panels (for a double-hung gate), shall not exceed 10 cm.

6.14.9. Fence Inspections

The entire perimeter of the electric fencing shall be inspected at least once every seven days and the voltage of the fencing measured at several points along the fencing and at each gate using a proper electric fence voltmeter matched to the brand of the fence charging unit. The results of voltage testing shall be recorded in a log book or electronic record. Any results less than the minimum 6,000 volts shall be immediately investigated for the cause of the low voltage (e.g., low battery, litter, vegetation, loose or crossed wires, broken insulators, breaks in the grounding system, etc.). Corrective actions to restore proper voltage shall be immediately undertaken.

Signs of digging or other attempts by bears to penetrate electric fencing shall be recorded in a log book or electronic record. Any penetrations through electric fencing by bears shall be immediately reported to the Conservation Officer Service at 1-877-952-7277.

In cases of low voltage or signs of penetration attempts, inspections shall be increased from once per week to once per day until proper voltage is fully restored and until there are no new signs of penetration attempts, respectively.

6.15. Municipal Solid Waste Separation

Municipal solid waste may be separated into the following streams: (1) a mixed waste stream including putrescibles for disposal; (2) a mixed waste stream not including any putrescibles for disposal; (3) an organic waste stream, including untreated wood wastes, for composting; (4) a selected waste stream for salvage and recycling; and (5) a selected combustibles waste stream for open burning or air-curtain burning. Each of these waste streams is subject to all of the general requirements contained in sections 6.1 through 6.14 above, as well as being subject to specific requirements as outlined in a separate section for each below.

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region

6.16 Groundwater Quality

The characteristics of the groundwater at the property boundary shall not exceed drinking water standards in Schedule 6 of the Contaminated Sites Regulation. Where natural background water quality concentrations exceed the aforementioned standard, the characteristics of the groundwater at the property boundary must not exceed background concentrations.

Where monitoring shows contaminant concentrations exceed the applicable water use, or other standards, the operational certificate holder shall notify the Director and take one of the following corrective actions:

- Mitigation to meet standards or
- Based on the results of a risk assessment carried out in accordance with Contaminated Sites Regulation guidance (i.e. Technical Guidance 7), undertake the warranted mitigation measures to achieve acceptable risk.

7. OPERATIONAL REQUIREMENTS FOR DISPOSAL OF SOLID WASTES CONTAINING PUTRESCIBLES

7.1. <u>Location</u>

The operational certificate holder shall identify an area for disposal of putrescible refuse (herein referred to as the putrescible disposal area) that is within the authorized municipal solid waste disposal footprint (see section 2.1.1). Disposal of any solid wastes consisting of or mixed with putrescibles shall be restricted to the designated putrescible disposal area.

7.2. Nature of Wastes

Wastes disposed at the active face of the putrescible disposal area may include any municipal solid waste except liquid wastes and hot ashes or as otherwise restricted by section 6.2.

7.3. Bear-Proofing

The putrescible waste disposal area shall be maintained inside an electric fence. The electric fence shall comply with all requirements of section 6.14.

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region

7.4. Waste Compaction

Wastes at the active face of the putrescible disposal area shall be spread in layers of 60 centimetres or less on the active face and then compacted with a minimum of three (3) passes with heavy equipment.

7.5. Maximum Lift Height

The maximum height of any lift of compacted refuse in the putrescible disposal area shall be 5 metres.

7.6. Waste Cover

Cover shall be applied to refuse in the putrescible disposal area as specified below. The operational certificate holder shall maintain a log book or electronic record with all dates of cover application.

7.6.1. Active Face Cover

Except as otherwise stated in sub-section 7.6.2, the active face of the putrescible disposal area does not normally require cover. Based on information concerning environmental or public health concerns related to exposed refuse at the active face, however, the Director may require that the active face be covered completely at a specified frequency with 0.15 m of soil (or functional equivalent) for a specified period.

7.6.2. Cell Cover

A uniform cover of 30 cm compacted soil shall be applied to all sides of the active refuse cell in the putrescible disposal area such that no more than 500 m² of refuse are exposed at the active face at any time and such that the volume of refuse in the cell does not exceed 5,000 m³. Once the maximum volume of refuse has been reached in a cell, the active face shall be covered with 30 cm of compacted soil and a new refuse cell begun.

7.6.3. Final Cover

Completed portions of the putrescible disposal area shall progressively receive final cover during the active life of the landfill (see section 15.5).

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region

7.7. <u>Dead Animal Disposal</u>

Dead animals and animal parts shall be disposed of in the putrescible disposal area and covered as soon as practicable with a minimum of 60 centimetres of soil and/or refuse material such that flies and scavenging animals are prevented from accessing the carrion.

8. <u>OPERATIONAL REQUIREMENTS FOR DISPOSAL OF NON-</u> PUTRESCIBLE SOLID WASTES

8.1. Location

The operational certificate holder may identify an area for the disposal of non-putrescible wastes (herein referred to as the non-putrescible disposal area) that is within the authorized municipal solid waste disposal footprint (see sub-section 2.1.1).

8.2. Nature of Wastes

Wastes disposed at the active face of the non-putrescible disposal area may include any municipal solid waste except putrescibles, liquid wastes and hot ashes or materials otherwise restricted by section 6.2.

8.3. Waste Compaction

Wastes at the active face of the non-putrescible disposal area shall be spread in layers of 60 centimetres or less on the active face and then compacted with a minimum of three (3) passes with heavy equipment.

8.4. Maximum Lift Height

The maximum height of any lift of compacted refuse in the non-putrescible disposal area shall be 5 metres.

8.5. Waste Cover

Cover shall be applied to refuse in the non-putrescible disposal area as specified below. The operational certificate holder shall maintain a log book or electronic record with all dates of cover application.

8.5.1. Active Face Cover

Except as otherwise stated in sub-section 8.5.2, the active face of

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region

the non-putrescible disposal area does not normally require cover. Based on information concerning environmental or public health concerns related to exposed refuse at the active face, however, the Director may require that the active face be covered completely at a specified frequency with 0.15 m of soil (or functional equivalent) for a specified period.

8.5.2. Cell Cover

A uniform cover of 30 cm compacted soil shall be applied to all sides of the active refuse cell in the non-pustrescible disposal area such that no more than 500 m² of refuse are exposed at the active face at any time and such that the volume of refuse in the cell does not exceed 5,000 m³. Once the maximum volume of refuse has been reached in a cell, the active face shall be covered with 30 cm of compacted soil and a new refuse cell begun.

8.5.3. Final Cover

Completed portions of the non-putrescible disposal area shall progressively receive final cover during the active life of the landfill (see section 15.5).

9. OPERATIONAL REQUIREMENTS FOR COMPOSTING

9.1. Location

The operational certificate holder may identify an area for composting (herein referred to as the composting area). Any composting shall be restricted to the designated composting area. This area shall be clearly identified at the landfill site.

9.2. On-Site Usage of Compost Product

Composting may be conducted passively by static pile (i.e., no aeration, etc.) provided the compost product is used on-site at the landfill for cover, reclamation or landscaping purposes. The compost piles must be rested at least one year after the last addition of organic waste prior to use.

9.3. Use of Sewage Sludge

Dewatered sludge from the liquid waste disposal lagoons authorized by

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region

section 2.3 may be included in static compost piles provided: the sludge is first blended with carbonaceous material (e.g., sawdust and/or wood shavings); and the public is prohibited from accessing any composting area that includes sludge.

9.4. Off-site Usage of Compost Product

If compost product is to be made available to the public or otherwise used offsite, composting operations shall comply with the requirements of the *Organic Matter Recycling Regulation* and any other relevant composting legislation.

9.5. Bear-Proofing

If the composting operation is to receive any organic wastes that are potential attractants to bears, then composting shall be completely enclosed by an electric fence or contained in a bear-proof structure (building or composting vessel). The electric fence shall comply with all requirements of section 6.14.

10. <u>OPERATIONAL REQUIREMENTS FOR STORAGE OF SELECTED</u> WASTES FOR SALVAGE AND RECYCLING

10.1. Location

The operational certificate holder may identify an area for the storage of selected wastes for salvage and recycling (herein referred to as the salvage/recycling area). Any salvage/recycling shall be restricted to the designated salvage/recycling area.

10.2. Nature of Wastes

Wastes to be salvaged/recycled may be any items with potential salvage or recycling value but shall not include any refuse consisting of or containing putrescibles, any liquid wastes, hot ashes or materials otherwise restricted by section 6.2.

10.3. Contamination

Contamination of any of the designated salvage/recycling storage piles

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region

with putrescible wastes shall be cleaned up immediately. Contamination of any of the storage piles with materials other than the intended salvageable/recyclable material (e.g., scrap metal with wood waste, or white goods with demolition debris, etc.) may result in a requirement to clean up the contamination or to landfill the contaminated material.

11. OPERATIONAL REQUIREMENTS FOR REGULATED OPEN BURNING

11.1. Location

The operational certificate holder may identify an area for the use of open burning to treat selected combustibles (herein referred to as the open burning area). Any open burning of selected wastes shall be restricted to the designated open burning area.

11.2. Quantity, Timing and Duration of Discharge

The maximum authorized quantity of wood residue to be open burned during each event is that which has accumulated at the time of burn initiation.

The maximum authorized duration of each burn shall be limited to the period between two hours after sunrise on the day of ignition, and sunset on the following day. Each open burn shall be completely extinguished at the end of the authorized burn duration.

Should a condition arise which prevents the burn pile(s) from being burned within this period, the Director shall be notified in accordance with this authorization.

11.3. Nature of Wastes

Acceptable materials for burning may only include dry, unpainted, untreated demolition, construction and packing-related wood residue, clean stumps and brush, but shall exclude nuisance-causing combustibles such as glue-containing wood, painted and treated wood, sawdust, yard wastes, mulch, wood chips, rubber, plastics, tars, insulation, roofing material, asphalt shingles, etc.

11.4. Favourable Weather for Smoke Dispersion

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region

Open burning shall not proceed unless the recorded Environment Canada Ventilation Index Forecast for Terrace is good for the first day and good or fair for the second day.

The contact number for the forecast is 1-888-281-2992. Ventilation index forecasts can also be obtained after 7:00 a.m. from the following Environment Canada website:

http://www.env.gov.bc.ca/epd/epdpa/venting/venting.html

A burn registration number shall be obtained from the Ministry of Forests (1-888-797-1717) prior to ignition.

Open burning of wood residue shall not be initiated or continued if the local air flow will cause the smoke to negatively impact a nearby population or cause pollution. No burning shall occur during periods of fire hazard or when burning is prohibited by other agencies.

11.5. Fire Accelerant

An approved fire accelerant such as diesel fuel or commercial fire starter gel or a flame-thrower shall be used to ensure efficient and rapid ignition of the waste material.

11.6. Minimization of Smoke

Each burn shall be tended in a manner that ensures minimization of smoke emissions. Measures to minimize smoke shall include, but not necessarily be limited to: stacking of waste in a manner that eliminates inclusion of dirt; waiting to burn until wastes are reasonably dry after any significant precipitation event; and using adequate equipment and staff.

11.7. Extinguishment Contingency Plan

Prior to burning, a contingency plan shall be in place detailing how the open burn will be extinguished in the event of any of the following occurring:

- i) Inadequate smoke dispersion in the surrounding environment;
- ii) wood continues to smoulder after the authorized burn period;
- iii) the Director requires that the open burn be extinguished for

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

X-Or

for Director, *Environmental Management Act* Authorizations - North Region environmental protection reasons

11.8. Extinguishment

All combustion shall be completely extinguished at the end of the authorized period as set out in Section 6.2.

12. OPERATIONAL REQUIREMENTS FOR DISPOSAL OF LIQUID WASTES

12.1. Location

The operational certificate holder may identify an area for the controlled disposal of selected liquid wastes (herein referred to as the liquid waste disposal area). Disposal of any liquid wastes from pumper trucks or the like shall be restricted to the designated liquid waste disposal area.

12.2. <u>Liquid Waste Disposal Lagoons</u>

Disposal of any liquid wastes shall be to properly designed and constructed lagoon(s) located in the liquid waste disposal area. The lagoon(s) shall function as decant lagoons (with decant discharged to an authorized liquid waste handling system such as a leachate treatment system) and/or as part of an organic matter composting system. The lagoons shall be of an impervious design that prevents the escapement of liquid to the ground. In all cases, design and construction of the liquid waste disposal lagoon(s) shall be such that seepage through the berms shall not occur.

12.3. Signage and Fencing

The liquid waste disposal area shall be fenced with chain link or steel woven-wire (e.g., page wire) a minimum of 1.2 metres high. Signs identifying the nature of the lagoon disposal area shall be erected on all sides of the fence such that the lagoons are easily identifiable from any approach.

12.4. Freeboard

A minimum freeboard of 50 centimetres shall be maintained at all times.

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region

water growing grown at the con-

The lagoon berms shall be maintained in good working order and the Director shall be notified immediately of any failure or overflow.

12.5. Nature of Wastes

The nature of wastes which may be discharged to a designated lagoon is that of typical septic tank pumpage, sewage holding tank waste, sewage treatment plant sludge, and wash water and grit from drain sumps at automobile wash facilities (intended primarily for cars and light trucks) and parking lots. Industrial liquid wastes and sludges shall be excluded.

12.6. Off-Loading Chute

An off-loading chute shall be provided to ensure that all effluent enters the lagoon and does not spill on the ground in the unloading area.

12.7. Sludge Removal

If the sludge is to be removed from a lagoon for final disposal at an active face of a designated solid waste disposal area (under section 7) or for composting (under section 9), then the lagoon must be rested for a sufficient amount of time to allow the wastes to dewater. Semi-solid sludge may be removed and stockpiled above ground for further dewatering provided: the sludge stockpile is located on impervious ground; drainage from the stockpile area is directed into the lagoon or other approved liquid waste disposal system (e.g., a leachate collection and treatment system) and provided the sludge stockpile is contained within a signed and fenced area as per section 12.3. Once the solidified sludge is deposited at an active face of a designated solid waste disposal area, it must be covered immediately with a minimum of 30 centimetres of cover material and then the area of sludge disposal compacted immediately after cover is applied.

12.8. Lagoon Closure

If a lagoon is to be closed without removal of sludge as per section 12.7, the sludge must be allowed to dewater to a moisture content that will support final cover. The lagoon must then be covered with a minimum of 1 metre of compacted soil and sloped to promote runoff.

12.9. Volume Measurement

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

> for Director, Environmental Management Act Authorizations - North Region

The operational certificate holder shall maintain a log book or electronic record with quantities of sewage wastes discharged to the lagoons.

13. MONITORING REQUIREMENTS

The operational certificate holder shall carry out an environmental monitoring program as follows:

13.1 Treated Leachate/Phytoremediation Area

Location	Parameters	Frequency
E249852 Treated Leachate Prior to Discharge to Phytoremediation Area	Lab: total metals, alkalinity, chloride, fluoride, sulphate, hardness, ammonia, nitrate, nitrite, total organic carbon, orthophosphorus, COD, BOD, VOCs¹, pH and Total Kjeldahl Nitrogen	Quarterly→Annually*
	Field: conductivity, temperature, turbidity, water level, flow rate, pH and dissolved oxygen Volume	Monthly→Quarterly* Continuous during seasonal discharge
E306624 Composite Soil Sample ² from Phytoremediation Area	Lab: metals, salinity	Annually, prior to discharge each season.

¹One-time sample of VOCs for background levels

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region

²Composite sample assembled from 4 locations from a pre-established list of 12 locations * quarterly reduced to annually and monthly reduced to quarterly following two complete years of sampling.

13.2 Groundwater

Location	Parameters	Frequency
Background	Lab:	
	dissolved metals,	
E251531 MW-02	alkalinity, chloride,	Quarterly→Annually*
E287385 MW-13	fluoride, sulphate,	
	hardness, ammonia,	
Early Detection	nitrate, nitrite, TOC, COD,	
	pH, VOCs ¹ and Total	
E251530 MW-01	Kjedahl Nitrogen	
E251532 MW-03	D' 11	
E251533 MW-04	Field:	Manthley Corontonley
E287379 MW-07	conductivity, temperature,	Monthly→Quarterly*
E287380 MW-08	water level and pH	
E287381 MW-09		·
E302210 MW-15		
E302211 MW-16		
All of the above wells and:	Water elevation	quarterly
	* *	
E251534 MW-05		·
E251535 MW-06		
E287382 MW-10		
E287383 MW-11		
E287384 MW-12		
E287386 MW-14		

¹One-time sample of VOCs for background levels

13.3 Surface Water

Location	Parameters	Frequency				
E273828 SW-01 (Onion	Lab:					
Lake)	total metals, dissolved					
E273829 SW-02 (Upper	metals, chloride, fluoride,	Quarterly→Annually*				
Clearwater Lake at outlet)	sulphate, hardness,					
E273831 SW-03 (Lower	ammonia, nitrate, nitrite,					
Clearwater Lake at outlet)	Total Kjedahl Nitrogen,					
E306587 SW-04 (Creek	pH, COD and BOD					

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region

^{*} quarterly reduced to annually and monthly reduced to quarterly following two complete years of sampling.

from Onion Lake at FSR) E296117 SW-05 (Clearwater Creek at FSR)		
	Field:	
	conductivity, temperature, turbidity, flow rate, pH and dissolved oxygen	Monthly→Quarterly*

^{*} quarterly reduced to annually and monthly reduced to quarterly following two complete years of sampling. Once sampling on an annual basis commences, it shall occur during the season with lowest stream flows

13.4 <u>Leachate and Water Monitoring Procedures</u>

13.4.1 <u>Sampling Procedures</u>

Sampling is to be carried out in accordance with the procedures described in the most recent edition of the "British Columbia Field Sampling Manual for Continuous Monitoring and the Collection of Air, Air-Emission, Water, Wastewater, Soil, Sediment, and Biological Samples", or by suitable alternative procedures as authorized by the Director.

13.4.2 Analytical Procedures

Analyses are to be carried out in accordance with procedures described in the most recent edition of the "British Columbia Environmental Laboratory Methods Manual for the Analysis of Water, Wastewater, Sediment, Biological Materials and Discrete Ambient Air Samples" or by suitable alternative procedures as authorized by the Director.

13.4.3 Quality Assurance and Quality Control

The operational certificate holder is required to conduct the following Quality Assurance and Control Program to determine the acceptability of data required by this operational certificate and

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region

Section 2(d) of the Environmental Data Quality Assurance Regulation:

- a) Obtain and keep current, the laboratory precision, accuracy and blank quality control criteria for each laboratory analyzed parameter from the analytical laboratory(ies)
- b) Collect one duplicate sample during each sampling session from one of the discharge points.
- c) Each duplicate sample shall be submitted to the laboratory; one of the pair identified as the regular sample, and the other, as a blind sample identified by a fictitious site-name established solely to identify the duplicate sample.
- d) For each parameter, report the results of the field duplicates in terms of the degree of variation as the relative percent difference
- e) A sample collection blank shall be prepared, containing distilled water, and preservative if required, and submitted as a blank sample with one sample set per session. If any result for any parameter indicates detectable concentrations, then efforts shall be made to determine and control the source of contamination.

14. DATA ANALYSES AND REPORTING

14.1. Log Book

As required by sections 6.14.9, 7.6, 8.5, and 12.9 the operational certificate holder shall maintain a log book or electronic record. The log book or electronic record shall be made available for inspection upon request by Ministry staff or Kitselas First Nation.

14.2. Reporting

Whenever required, the operational certificate holder shall submit data, studies and reports to the Director by email or electronic transfer or as otherwise instructed.

An annual report shall be submitted to the Director and posted on the Regional District of Kitimat-Stikine website on or before June 30 each year for the previous calendar year.

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

> for Director, *Environmental Management Act* Authorizations - North Region

The annual report shall contain at minimum:

- i) The type and tonnage or volume of waste received, recycled, composted and landfilled for the year;
- ii) Occurrences or observations of wildlife attempting to access the facility;
- iii) The results of all required monitoring programs undertaken by the operational certificate holder for the site. Trend analysis, as well as an evaluation of any identified impacts of the discharges on the receiving environment in the previous year shall be carried out by a qualified professional.

14.3. Groundwater Model

The operational certificate holder shall have a qualified professional maintain the existing groundwater model of the landfill site and immediate downstream receiving environment using all available, relevant groundwater and surface water monitoring, stream flow, and precipitation data. Development of the groundwater model shall include a water balance assessment for the drainage area in which the landfill site is situated. The groundwater model shall define, where possible, the groundwater regime (flow directions, flow rates, groundwater divide, any evidence of a leachate plume, extent of plume, etc.) at and in the immediate surrounding area of the landfill site. Based on monitoring data and inferred groundwater flow direction from each previous year, the annual report as required in Section 14.2 shall contain a preliminary assessment of any recommended changes to the model. Based on this assessment and any other information available, the Director may require that a formal update to the model be undertaken.

15. <u>CLOSURE REQUIREMENTS</u>

15.1. Notification of Closure

The operational certificate holder shall notify the Director and Kitselas First Nation in writing of intentions to close the landfill site.

15.2. Closure Plan

A closure plan shall be submitted to the Director upon request. Upon

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region

issuance of the draft closure plan, the Kitselas First Nation shall also be provided with a copy. The closure plan shall, as a minimum, include the following:

- proposed end-use of the landfill property after closure;
- anticipated total waste volume and tonnage, and life of the landfill (i.e., closure date);
- a topographic plan showing the final elevation contours of the landfill and surface water diversion and drainage controls;
- design of the final cover suited to the intended end-use of the site, including the thickness and permeability of barrier layers and drainage layers, and information on topsoil, vegetative cover and erosion prevention controls;
- procedures for notifying the public about the closure and about alternative waste disposal facilities;
- rodent and nuisance wildlife control procedures;
- a comprehensive monitoring plan, including groundwater monitoring, surface water monitoring, landfill gas monitoring, leachate monitoring, final cover monitoring, and erosion and settlement monitoring, for a minimum post-closure period of 25 years;
- a plan and accompanying design for the collection, storage and treatment/use of landfill gas for a minimum 25 year post-closure period (if required);
- a plan for operation of any required pollution abatement engineering works such as leachate collection and treatment systems, for a minimum post-closure period of 25 years; and
- an estimated cost, updated annually, to carry out closure and postclosure activities for a minimum period of 25 years.

15.3. Closure Funding

The operational certificate holder shall ensure that sufficient funds will be available to provide for all closure and post-closure requirements as outlined in the closure plan required by section 15.2, plus a reasonable contingency for any remediation which may be required.

15.4. Final Cover

The final cover system shall be designed by a qualified professional to match the intended end-use of the landfill site and to match the needs of any required environmental management systems (leachate minimization or recirculation, as the case may be, landfill gas collection and treatment,

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

> for Director, *Environmental Management Act* Authorizations - North Region

etc.). Generally, the final cover shall consist of a layer of 1 metre of low permeability (<1 x 10⁻⁵ cm/s) compacted soil followed by a layer of topsoil suitable for establishment of vegetation. Use of higher permeability soil must first be approved by the Director. The final cover shall be constructed with minimum and maximum slopes as specified by a qualified professional (see section 3.4) to promote runoff and minimize erosion, with appropriate runon/runoff drainage controls, erosion controls, and gas venting controls. The site shall be seeded with a grass/legume mixture suited to the local climate.

15.5. Progressive Application of Final Cover

Completed portions of the landfill shall progressively receive final cover during the active life of the landfill. The maximum area of disposed refuse that has not yet received final cover shall not exceed 25% of the total final footprint area. Final cover is to be applied according to the specifications identified in section 15.4.

16. ENVIRONMENTAL IMPACT

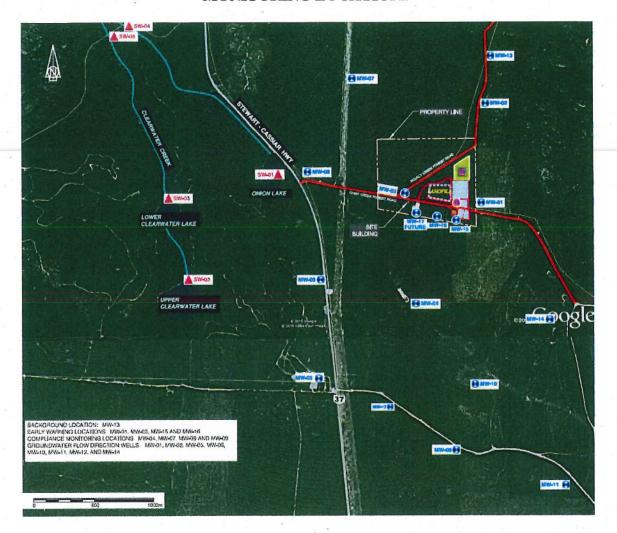
Inspections of the discharge will be carried out by Environmental Protection personnel as a part of the routine operational certificate inspection procedure. Based on these inspections and any other information available to the Director on the effect of the discharge on the receiving environment, the operational certificate holder may be required to undertake additional monitoring, install additional pollution control works, or change the method of operation.

17. MAINTENANCE OF WORKS, EMERGENCY PROCEDURES AND NON-COMPLIANCE REPORTING

The operational certificate holder shall inspect the operation regularly and maintain it in good order. The operational certificate holder shall immediately notify the Director or designate as well as the Kitselas First Nation of any circumstance which prevents continuing operation in the approved manner or results in noncompliance with the requirements of this operational certificate.

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, *Environmental Management Act* Authorizations - North Region


SITE PLAN

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent)

for Director, Environmental Management Act Authorizations - North Region

MONITORING LOCATIONS

Date Issued: November 7, 2008 Date Amended: September 19, 2019 (most recent) Low-1888

for Director, *Environmental Management Act* Authorizations - North Region

								•
					4.			
			•					
	•							
					•			
						·		
				•				
	•	•						
•						•		
	•							
					•			
							•	
		•.						
		· -						
•				· .				
					•			
							•	

Appendix E: Borehole Logs

			_	_	Kitimat-Stikine	Double D Drilling	=	BOREHOLE NO: BH-1	- 1
w		_		-	Siting Investigation)	Air Rotary	<u>}</u>	PROJECT NO: YE50789	
	Terrace,	_			The second secon			ELEVATION: 227.63 (m)	6
	SAMPLE	T	YPE		DISTURBED CORE E	arrel run Split spoon	AUGER FLYTES	AIR RETURN	(
		SAMPLE LIFE	SAMPLE NO	SOIL SYMBOL	De	Soil escription	WELL	Installation Details	ELEVATION(m)
	5.0		i-1	64 C 64 C 64 C 64 C 64 C 64 C 64 C	SAND, medium, some fine wood bits (roots?), dry-m greyish-brown. SAND, medium to fine, somoist, greyish-brown. SAND, fine with medium, somoist, light brown. SAND, medium to fine, somoist, greyish-brown. -moist to damp -rock at 21-22.5' -becomes GRAVELLY SAND and GRAVEL, medium rounded to subangular gr	me GRAVEL, dry to some GRAVEL, dry me GRAVEL, dry to m to fine sand,		Stick-up casing at surface, locked.	-227.0 -222.0
	15.0 - 15		T-3		greyish-brownrock at 33-34' SAND, medium to fine, tro to damp, greyish-browndamp to wet			Steel casing, 6".	212.0
	20.0			444	SAND and GRAYEL, mediu subrounded to subangula greyish—brown. —dry to moist —dense, slower drilling SAND, medium to fine,da green. —trace GRAYEL	r, damp,			207.0
	25.0		1-4	A	-some GRAYEL SAND, fine to medium, s grey, dry SAND, medium to fine, t grey-green, moist				202.0
Č,	35.0	GF	RA	Take the state of	-wet -GRAVELLY, damp to we	mental Limited	LOGGED BY; GRE REVIEWED BY; GEB Fig. No: BH-1	COMPLETION DEPTH: 61 COMPLETE: D2/12/97	.0 m

.

	Regional District of Kitimat-Stikine	Double D Drilling		BOREHOLE NO: BH-1	
	Proposed Landfill Siting Investigation	Air Rotary)	PROJECT NO: VE50789	
for.	Terrace, British Columbia	- North		ELEVATION: 227.63 (m)	
Similar Control		REL RUN SPLIT SPOON	AUGER FLYTES []]	AJR RETURN	
				Part Colonia	
,	DEPTH (m) SAMPLE TYPE SAMPLE NO SOIL SYMBOL	Soil	WELL	Installation	ELEVATION(m)
	E III 및 SS			IIIacattactott	흔
	SAMPLE TYP SOIL SYMBO	scription	STA	Details	¥
*			=		
4	35.0 -trace to no GRAVEL				192.0
					E 132.0
	- GRAVELLY				E
	-trace to no GRAVEL	fä			E
i	1-B 44				ŧ l
	40.0		. 1 11		E -
12	-some GRAVEL				187.0
9 00	- Irace slit				F \
7	E II M				E
			4.1		E 💌
*	45.0	2			182.0
	F 124		Staat	casing, 6".	-182.0
	E 1557	• 7	31001	casing, b	E
					Ē ŀ
6	SAND, medium, grey, salur	oted			È I
	1-9 444	alea	\$ B		E \
	50.0				Ĕ-
	F 1 133				-177.0
3	E Kil				E
A.	- (23				E
***	-trace coarse SAND, trace	GRÁVEL			- E
Ì	55.0				
4					-172.0
3					
į	E 11 ES		\$ 11		E \
	E 124	;			E
*	F				
3	60.0		K-1	oacker	167.0
	E Aid		#20	Stainless steel screen	E-187.0
	SAND, medium to coarse,	some GRAVEL,	HNO	ive sand pack	Ē-
1	saturated.			er .	Ę \
190	BEDROCK, granitic, grey, END OF HOLE @ 63.1 m	207 fi)	Boi	from plug, welded.	E
į	E-65.0	19			E
•			1		152.0
ř.			1 1		Ē
1					Ę
4	E		22 T		Ē
W	70.0				E
4	AGRA Earth & Environs	antal Timital	LOGGED BY: GRE	COMPLETION DEPTH:	81.0 m
1	•		REVIEWED BY: GEB	COMPLETE: 02/12/	97
ş	Burnaby, B.	<u> </u>	Fig. No: BH-1		Page 2 of 2

. [Region	ıal	Distr	ict o	f Kîtîmoî-Stikine Double D Drilling	BOREHOLE NO: BH-2	7
		_			Siting Investigation) Air Rotary) PROJECT NO: YESD789	
		_	-		lumbia	ELEYATION: 231.43 (m)	
P15	SAMP	E	TYPI		DISTURBED CORE BARREL RUN SPLIT SPOON	AUGER FLYTES AIR RETURN	
		SAMPLE TYPE	SAMPLE NO	SOIL SYMBOL	Soil Description	Installation Details	ELEVATION(m)
	0.0			446	GRAVEL, with SAND, angular, medium gravel, coarse to medium sand, greyish—brown, moist.	Stick-up casing at surface, locked.	0.183
	5.0		2-1	44 4	SAND, medium, some coarse, trace medium grovel, greyish—brown, moist. —GRAVELLY —and GRAVEL, medium, angular —GRAVELLY, medium		226.0
	10.0		2-3	11.4	-and GRAVEL, medium SAND, medium, trace medium GRAVEL, grey- brown, moist to dampsome GRAVEL, medium, damp -trace fine SAND		221.0
	15.0		2-4	SA.	-GRAVELLY, medium, damp SAND, medium to fine, trace to no gravel,	Steel casing, 6".	-216.0
	20.0 المناسليس المناسلي		2-5	14 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SAND, medium, GRAVELLY, medium, grey-brown damp. -grey-green -medium to fine gravel, rounded to subrounded -SAND, medium, and GRAVEL, medium to fine -GRAVEL, medium and SAND, medium -cobbles to coarse gravel, 76'- 82'		-211.0
	25.0			6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	rounded to subrounded, grey-green, dampsome GRAVEL, medium to fine -trace GRAVEL, fine to medium -some GRAVEL		206.0
(30. 20. 35.		2-	7 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	-GRAVELLY, rounded to subrounded, medium		201.0
	A 31712/			. Ea	arth & Environmental Limited Burnaby, B.C.	LOGGED BY: GRE COMPLETION DEPTH: 58.2 n REVIEWED BY: GEB COMPLETE: 03/12/97 Fig. No: BH-2 Page	n 1 of 2

Proposed Londfill Siting Investigation Air Radary				Double D Drilling		f Kilimat-Stikine	ict o	Dist	ial I	Regio	. 1
SAMPLE TYPE DISTURBED CORE BARREL RUN SPLIT SPOON AUGUST FLYTES III AR RETURN SOIL SOIL Installation Description Details Soil Jar Return Installation Details Details Soil Jar Return Installation Details Some GRAVELLY, medium in fine, rounded to subrounded, froce Silt — on Silt — some GRAVEL -some in frace GRAVEL, medium, subrounded to rounded to rounded for rounded for the rounded fo		BOREHOLE NO: BH-2			n)	Siting Investigation	dfill	Lon	sed	Propo	ļ
Soil Soil Description Details Soil 2-8 444 -GRAVELLY, medium la fine, rounded to subrounded, frace Silt -no Silt -same GRAVEL, medium, subrounded to rounded 1-race GRAVEL, trace Silt -irace GRAVEL, damp -irace GRAVEL, damp -irace Silt, some GRAVEL -some GRAVELY -some GRAVELY -some GRAVELY -some GRAVELY -some GRAVELY -some GRAVEL -some GRAVEL											
Soil Bescription Description Details For a subrounded, trove Silt subrounded to subrounded, trove Silt subrounded, trove Silt subrounded, trove Silt subrounded, trove Silt subrounded to rounded some GRAVEL, trace Silt some GRAVEL, trace Silt some GRAVEL, trace Silt some GRAVEL Some GRAVEL GRAVELLY, damp -trove Silt, some GRAVEL -some Silt, some GRAVEL -some Silt, some GRAVEL -some Silt, some GRAVEL -some GRAVEL -mo Silt, GRAVELLY -some GRAVEL -mo Silt, some GRAVEL -mo Silt, some GRAVEL -mo Silt, some GRAVEL -some GRAVEL -some GRAVEL -some GRAVEL -mo Silt, some GRAVEL -some GRAVEL	_	TITAL PETITION (m)	AUGER FLYTES	EL RUN SPLIT SPOON	CORE BARREI	DISTURBED		TYP	LE]	SAMP	,
Subrounded, trace SiLT -aome GRAVEL -some GRAVEL -some of irace GRAVEL, medium, subrounded -irace GRAVEL, trace SiLT -ine to medium SAND -no SiLT -some GRAVEL -some GRAVEL -some GRAVEL -some GRAVEL -some GRAVEL -some GRAVEL -some SiLT, some GRAVEL -some SiLT -some SiLT -some GRAVEL -some SiLT -some GRAVEL -wet to saturated, water in air return -some GRAVEL -wet to saturated, water in air return -some GRAVEL -wet to saturated, water in air return -some GRAVEL -some GRAVEL -wet to saturated, water in air return -some GRAVEL -some GRAVEL -wet to saturated, water in air return -some GRAVEL	ELEVATION(m)			Soil	\$. * g	SOIL SYMBOL	SAMPLE NO	SAMPLE TYPE		
-some GRAVEL -some to trace GRAVEL, medium, subrounded to rounded -trace GRAVEL, trace SILT -fine to medium SAND -no SILT -some GRAVEL -GRAVELLY, damp -irace SILT, some GRAVEL -some SILT -some SILT -some SILT -some SILT -some GRAVEL	-198.0			rounded to	dium la fine, ra ce SiLT	subrounded, trac	444	2-8	II.	35.0	
Sieel casing, 6".	₹	THE COLL MENTAL STREET		um, subrounded	trace SILT n SAND	-some GRAVEL -some to trace of to rounded -trace GRAVEL, to time to medium -no SILT -some GRAVEL -GRAVELLY, damp	4 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			Ā	
-medium to fine SAND, angular to	-186.0	Steel casing, 6".		ir return oarse, greyish	CLLY ed, water in air and SAND, coo	-SILTY -some SILT, some of silt, gravel come gravel wet to saturated GRAVEL, angular of some saturated brown saturated	44 64	2-11][2		
SAND, medium to fine, some GRAVEL, trace SILT, greyish brown, wet.	-181.				e SAND, angula VEL o fine, some G	-medium to fine subangular GRAVI SAND, medium to SILT, prevish brov	114				
2-12 4 4 END OF HOLE @ 58,2 m (191 ft)	176.	Native soud pack		tt)			444	2-12	1 2	- 55.0 - -	
E-60.0	171	2.						200		60.0	
65.0	166						#E			65.0	
70.0	THE STATE OF										
Burnaby B.C. REVIEWED BY: GEB COMPLETE: 03/12/97		COMPLETION DEPTH: 58.2 m COMPLETE: 03/12/97 Page 2	REVIEWED BY: GEB	ntal Limited			Ear				

				Kîtimat-Stikîne	Double D Drilling			HOLE NO: BH-3	
				Siting Investigation)	. Air Rolary			ECT NO: YE50789	
SAMP		-			TOLORI PUN TOLORIA		Andrew Control	ATION: 226.68 (m)	
JAMI	T	HIL		DISTORBED CO	RE BARREL RUN SPLIT SPOON	AUGER FLYTES	AJR RET	URN []	
DEPTH (m)	SAMPLE TYPE	SAMPLE NO	SOIL SYMBOL	3	Soil Description	WELL INSTALL ATION	In	stallation Details	EL EVATION(m)
0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		3-1		SAND, coarse to media angular to subrounded, SAND, medium to fine, moist to damp. —GRAVELLY —cobble at 19' —medium—coarse SAND	medium brown, moist		Stick-up cas locked.	sing at surface,	-22
16.0 معلوم المعرادين	I	3-2	1 4 4 1 4 6 1 4 6 1 4 6 1 4 6 1 4 6 1 4 6 1 4 6	-some fine SAND SAND, medium to fine, brownish grey, moist -medium to coarse SA -GRAVELLY SAND, medium to coarse	some GRAVEL, ND se, and GRAVEL,				2
15.0		3-3	144	rounded to subrounder —trace SILT, GRAVELLY —dark brown	, medium brown, damp		Steel casing	, 6 ⁿ .	anne ann ann ann ann ann ann ann ann ann
20.0				-medium SAND, trace -medium to coarse S/ -medium SAND, trace -medium to coarse S/	NO, and GRAVEL GRAVEL				hadalanı
25.0		3-	4	-GRAVEL and SAND -SAND, medium, GRA	ELLY			(a	TENTE PERSONAL
100 miles	0		44	SAND, medium, trace rounded, greyish brow	fine, and GRAVEL,				
= 35.		RA	Ha	irth & Enviro	nmental Limite	LOGGED BY: GRE		COMPLETION DEPTH:	59.7 m
1 23	. W.	LVAT	ΠC	Burnaby,		REVIEWED BY: GEB Fig. No: BH-3		COMPLETE: 04/12/9	7 Page 1

	F				
* 1	Regional District of Kitimat-Stikine	Double D Drilling		BOREHOLE NO: BH-3	
	Proposed Landfill Siling Investigation Terrace, British Columbia	Air Rolary		PROJECT NO: YE50789	
Fig		PRE BARREL RUN SPLIT SPOON	AUGER FLYTES	ELEVATION: 226.68 (m)	
Control of the Contro		ME DAILIEE VOIL M SEETI SLOOM	HADGER FETTES [[]]	AIR RETURN 📗	
	DEPTH (m) SAMPLE TYPE SOIL SYMBOL	Soil	WELL	Installation	ELEVATION(m)
	SAMPLE SAMPLE SOIL SY	Description	INSTAL	Details	LEVATI
*	35.0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			27	191.0
	3-5 A 4 V A	DANE CONTE			186.0
	SAND, medium to cod brownish grey, wet	rse, Iraca Gravel,		< </td <td>Ā</td>	Ā
	3-6 44 -water in dir return		Steel	casing, 6".	181.0
(50.0			ä	176.0
					E
na t	GRAVEL, rounded, sor salurated.	ne coarse SAND,	K-pa	oker	i I
,	8 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	18 0	II-III Nativ	Stainless sleet screen e sand pack m plug, welded.	171.0
	END OF HOLE @ 59.7	m (196 fi)			E 166.0
a	dender de la constante de la c				museum
	E 65.0				161.
Company of the Compan	70.0				продава
	AGRA Earth & Enviro	nmental limited	LOGGED BY: GRE	COMPLETION DEPTH:	59.7 m
	Burnaby		REVIEWED BY: GEB Fig. No: BH-3	COMPLETE: 04/12/9	7 Page 2 of 2
	\$1/12/16 02:05AM		1.13. 1.5. 011 0		1 440 2 01 2

¥ = 4

LOCATION: Terrace, B.C.

RECORD OF BOREHOLE: MW-07

BORING DATE: August 24, 2006

SHEET 1 OF 3

DATUM:

₀		로	SOIL PROFILE	I E		L	JA.	MPL						NG №	PIEZOMETER
METRES	DODING METUOD	BOKING ME	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %	11			ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
0			Ground Surface	. 0	229.93 0.00										Top of Casing at Elev. 230.82m
2			Loose, dry, grey, fine SAND and subangular GRAVEL.	30°0°0°0	227.80	1	cs						ii a		Bentonite Seal
4			Loose GDAVEL trace to some sand		2.13	2	cs								aniahisansaniani
4			Loose GRAVEL, trace to some sand from 3.05m - 6.1m depth.			3	cs								63
6				S	223.83 6.10	4	cs								
			Loose, dry, grey, fine to coarse SAND and subangular to subrounded GRAVEL.	0,000	222.31 7,62	5	cs								inemenement
8					7,02										21-10
	ig Ltd.	yary				-6	cs								
10	Double D Drilling Ltd.	Barber Air Rotary				7	-66-								Slough
12						8	cs								ANE PARTEURA
14			Loose, dry, light brown, fine to coarse SAND, some gravel. grey-brown from 10.7m - 12.2m depth. trace fine gravel at 15.2m depth. some gravel at 18.8m depth.			9	CS			14					
16			26			10	cs								ANPANYANTAN
						11	cs	14							E AM ANA A
18						12	cs								Medal dang
20			CONTINUED NEXT PAGE			13	CS					 			A PARENTAL

DEPTH SCALE

1:100

LOGGED: L.W.

LOCATION: Terrace, B.C.

RECORD OF BOREHOLE: MW-07

BORING DATE: August 24, 2006

SHEET 2 OF 3

DATUM:

ω	THOD	SOIL PROFILE	ΙĘ			SA	MPL	1	T.					A PING	PIEZOMETI	ER
METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE		1			ADDITIONAL LAB. TESTING	OR STANDPIP INSTALLATI	PE ION
20	Т			209,51					H							
22			0.000	20,42		cs										
			0000000	>	15	cs										
24					16	cs										TATE WELL THE TABLE
26		Loose, dry, grey, gravelly fine SAND. - fine to coarse sand at 24.4m depth. - grey-brown, fine sand, some gravel at 27.4m depth. - moist at 29.0m depth.	00000		17	cs										A CANAGAMA
28			0.00		18	cs							10			
S Double D Drilling Ltd.	ur Rotary		000		19	cs							8		Slough	
Double D	Barber Air		90		20	cs										1.)
32			5,00000	198.53 31,39	21	cs										
34			0000		22	cs									*1	TWI TWILLIAM
36		Loose, moist, brown, fine to coarse SAND and GRAVEL.			23	cs										WYSTALLSWINSTALLSWIN
					24	cs										ANNIDANG DANNIDA NATURANA INTE
38					25	cs										ARACIDAMI.
10			, O A		26	cs 				 		 	 	-:-	Bentonite Seal	
		CONTINUED NEXT PAGE	Ш						4							

LOCATION: Terrace, B.C.

RECORD OF BOREHOLE: MW-07

BORING DATE: August 24, 2006

SHEET 3 OF 3

DATUM:

Щ	Q P	SOIL PROFILE				SAI	MPLE	S					<u>0</u>	DIEZOMETED
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	CORE No.	RECOVERY %			1	ADDITIONAL LAB. TESTING	PIEZOMETER OR STANDPIPE INSTALLATION
40		Loose, moist, brown, fine to coarse SAND and GRAVEL. (continued)	0000000		27	cs								Filter Sand
- 44	villing Ltd. r Rotary			187.26 42.67		cs								Slotted PVC Pipe Sept.13/06
46	Double D Drilling Ltd. Barber Air Rolary	Loose, moist, brown, medium SAND, trace gravel.			30									Slough
48				470.04	32									
		End of BOREHOLE.		179.64 50.29	-33-	OS-								
- 52														
- 54					5		5		o					
- 56														
- 58														
- 60														
DEF	PTH S	CALE							GG	alder			LOGGE	ED: L.W.

LOCATION: Terrace, B.C.

RECORD OF BOREHOLE: MW-08

BORING DATE: August 25, 2006

SHEET 1 OF 2

DATUM:

Top of Casil Elev. 195.62 Ground Surface 194.62 1 C8 Loose, moist, brown, medium to coarse SAND, trace subangular to subrounded gravel. 1 C8 Slough Loose, moist, brown, fine SAND fine to medium sand at 9.1m depth. 5 C8	오	SOIL PROFILE				S	AMPI	LES			F G F	PIEZOMETER
Loose, moist brown, medium to coerce Shall (see subsingular to subrounded graws) 2 cs	METRES BORING METHOD	DESCRIPTION	STRATA PLOT	DEPT	NUMBER	TYPE	BLOWS/0.3m	CORE No.	CORE RECOVERY %	I.	ADDITIONAL LAB. TESTING	OR STANDPIPE INSTALLATION
Loose, moid, brown, medium to coarse grave. Loose, moid, brown, fine SAND, the euthory, list to subcurried grave. 10	0	Ground Surface	1	194	62							Top of Casing at Elev. 195.62m
Loose, moist, brown, fine SAND Solution Solution		SAND, trace subangular to subrounded			2	CS						Bentonite Seal Slough
Loose, moist to wet, dark grey-brown, fine SAND, -fine to medium sand at 9.1m depth. 5 CS Bentonite Sea Bentonite Sea Filter Sand 7 CS Slotted PVC Pipe 16 Loose, moist to wet, dark grey-brown, medium SAND, -wet at 12.2m depthfine to medium sand at 15.2m depth. 16 Loose, wet, grey-brown, fine SAND, some silt.					10	CS						SIMEAN ESTATA
Loose, moist to wet, dark grey-brown, medium SAND wet at 12.2 m depth fine to medium sand at 15.2m depth. 16 Loose, wet, grey-brown, fine SAND, some slit. 178.33 10.28 Slotted PVC Pipe 11 CS		Loose, moist, brown, fine SAND. - fine to medium sand at 9.1m depth.		183.	25							□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
Slotted PVC Pipe Loose, moist to wet, dark grey-brown, medium SAND wet at 12.2m depth fine to medium sand at 15.2m depth. 9	a					-00			П			Filter Sand
Slough Loose, wet, grey-brown, fine SAND, some silt.		Loose, moist to wet, dark grey-brown, medium SAND.										Slotted PVC Pipe
Loose, wet, grey-brown, fine SAND, some silt.	16	- wet at 12.2m depth. - fine to medium sand at 15.2m depth.			9	cs						
CONTINUED NEXT PAGE		some silt.		176.3 18.2	9 10						 	
		SSATINGED HEAT FAGE		<u> </u>	1	_	<u> </u>		· 10			

LOCATION: Terrace, B.C.

RECORD OF BOREHOLE: MW-08

BORING DATE: August 25, 2006

SHEET 2 OF 2

DATUM:

ٍ و		SOIL PROFILE	1				MPLE	_							일	PIEZOM	METER
DEPTH SCALE METRES	BORING METHOD	DESCRIPTION	STRATA PLOT	ELEV. DEPTH (m)		TYPE	BLOWS/0.3m	CORE No.	RECOVERY %	D		1.			ADDITIONAL LAB. TESTING	OF STAND INSTALL	R OPIPE
20		Loose, wet, grey-brown, fine SAND, some silt. (continued)		173.28 21.34													
- 22		Loose, wet, brown-grey SILT, trace clay.		21,34		cs											
- 24				170.24 24.38	. 13	cs											
- 26	Ltd.				14	cs											
	Double D Drilling Ltd. Barber Air Rolary				16	CS										Slough	
30		Loose, wet, dark grey-brown, silty SAND															
32																	
34																	STATES AND STATES
36		End of BOREHOLE.		158.04 36.58	-17-	GG-											
38																	55
40												,					
DEP	TH S	CALE							Rive	older		L		 	L	D: L.W.	

Appendix F: Leachate Discharge Volume 2019 – Data and Calculations

Forceman Ridge Pump Log

Pump 5

Day	,			Direction			Pump Set	tings	Observations	
Date	Time	Hrs	Phyto	Phyto Ditch	Recirc	Auto	Off	On	Comments	Name
30-Jan-19	11:23	-	·						External fault - (reset) pump was in auto, not running	CK
07-Feb-19	10:20	515.9					Х		not on	CK
11-Feb-19	2:15	515.9					Х		-	CK
27-Feb-19	1:45	515.9					Х		inspected kiosk	CK
04-Mar-19	11:35	515.9					Х		-	CK
15-Mar-19	11:15	515.9					Х		electricians exposed blower panels	
26-Mar-19	10:00	515.9			Х	Х			Spring startup	JL
29-Mar-19	12:20	529.4			Х	Х			-	CK
05-Apr-19	11:20	594.8			Х	Х			-	CK
10-Apr-19	1:30	636.6			Х	Х			-	CK
18-Apr-19	10:15	641.9			Х	Х				CK
23-Apr-19	10:45	641.9			X	Х				Ck
03-May-19	10:55	763.6			Х				in manual	CK
10-May-19	11:10	858.6			Х	Х				CK
17-May-19	10:15	880.1			X	Х				CK
24-May-19	10:35	905.1			X	Х				CK
31-May-19	11:30	964.4			X			Х	5 in manual	JL
14-Jun-19	9:25	1,170.7	Х	-	-	-	-	-	-	CK
27-Jun-19	10:55	1,267.9	Х			Х			-	CK
11-Jul-19	12:00	1,382.4	Х			Х			drive was tripped/reset, pond full	CK
12-Jul-19	9:20	1,403.9		Х		Х			Sand pond full	JL
19-Jul-20	10:10	1,432.0	Х							CK
23-Jul-19	10:05	1,436.3	Х			Х			lightning storm tripped everything	JL
26-Jul-20	10:02	1,466.5	Х			Х				CK
01-Aug-19	10:15	1,490.9			X	Х			tripped	CK
07-Aug-19	12:10	1,495.0			Х	Х			both 3 and 5 on auto	PM
16-Aug-19	2:00	1,560.3	Х			Х			fixed float	JL
19-Aug-19	8:30	1,609.1		Х					Can't keep up to P3 evacuating to ditch	JL
22-Aug-19	12:50	1,684.9		Х		Х			Levels good - ditch open half turn	HJ
23-Aug-19	10:00	1,699.1	Х			Х				CK
26-Aug-19	12:30	1,741.9		Х		Х				JL
06-Sep-19	11:30	1,900.4	Х							CK
26-Sep-19	1:50	2,002.5	Х			Х				CK
31-Oct-19	11:00	2,032.6			Х					CK
31-Jan-20	1:50	2,051.5			Х					CK

SOME potential variables to be considered for calculating total losses and ultimate discharge.

Size of Pump #5 = 340 GPM
Size of Pimp #5 = 150 mm HDPE up to Aeration Pond then 100mm (to be confirmed)

Slope of Pipe = min 2% (actual to be confirmed)

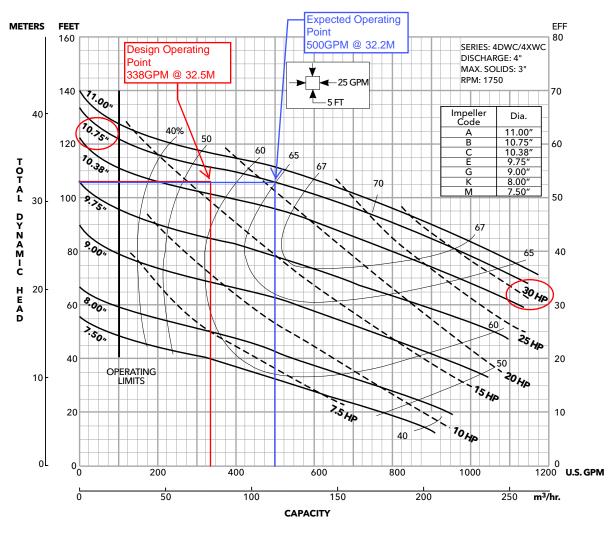
Number of 45 degree bends = ?

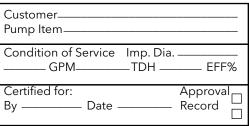
Number of 90 degree bends = ? Number of Tees = ?

Friction loss = ? Other losses = ?

Phyto area=

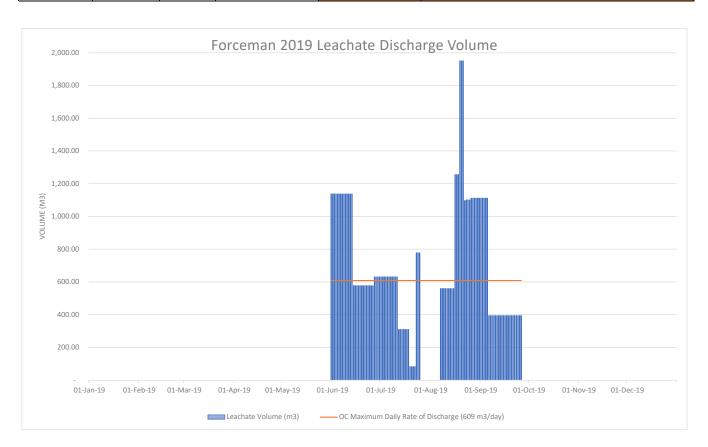
2.5 hac 25,000 sq m One US gallon is equal to


Pumping Hrs	Pumping mins	340 Pumping Gallons	Recirc/Auto/Off/on Pumping Gallons	Phyto Pumping Gallons	Ditch Pumping Gallons	0.00378541 Total Pumping m3	Phyto Pumping m3	Ditch Pumping m3
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-
- 42.5	-	275 400	- 275 400	-	-	- 4 042	-	-
13.5	810	275,400	275,400	-	-	1,043	-	-
65.4	3,924	1,334,160	1,334,160	-	-	5,050	-	-
41.8	2,508	852,720	852,720	-	-	3,228	-	-
5.3	318	108,120	108,120	-	-	409	-	-
- 121 7	7,302	2 402 600	2 492 690	-	-	9,398	-	-
121.7 95.0	7,302 5,700	2,482,680 1,938,000	2,482,680 1,938,000	-	-	7,336	-	-
21.5	1,290	438,600	438,600	-	-	1,660	-	-
25.0	1,500	510,000	510,000	-	-	1,931	-	-
59.3	3,558	1,209,720	1,209,720	-	-	4,579	-	-
206.3	12,378	4,208,520	1,209,720	4,208,520	-	15,931	- 15,931	-
97.2	5,832	1,982,880		1,982,880	-	7,506	7,506	-
114.5	6,870	2,335,800		2,335,800		8,842	8,842	
21.5	1,290	438,600		2,333,800	438,600	1,660	- 0,042	1,660
28.1	1,686	573,240		573,240	438,000	2,170	2,170	1,000
4.3	258	87,720		87,720		332	332	
30.2	1,812	616,080		616,080		2,332	2,332	
24.4	1,464	497,760	497,760	010,080		1,884	2,332	
4.1	246	83,640	83,640			317	_	_
65.3	3,918	1,332,120	63,640	1,332,120		5,043	5,043	_
48.8	2,928	995,520		1,552,125	995,520	3,768	-	3,768
75.8	4,548	1,546,320			1,546,320	5,853		5,853
14.2	852	289,680		289,680	2,5 .0,520	1,097	1,097	-
42.8	2,568	873,120		203,000	873,120	3,305	-	3,305
158.5	9,510	3,233,400		3,233,400	,	12,240	12,240	-
102.1	6,126	2,082,840		2,082,840		7,884	7,884	_
30.1	1,806	614,040	614,040	_,,		2,324	-	_
18.9	1,134	385,560	385,560			1,460	-	-
	•	31,326,240	10,730,400	16,742,280	3,853,560	,	63,376	14,587
					31,326,240			


TOTAL m3 77964

512.9210526

4XWC


SUBMERSIBLE SEWAGE PUMPS

Leachate Discharge 2019 Summary

Start Date	End Date	Period (days)	Total Discharge (m3)	Avg. Daily Discharge Rate (m³/day)	Notes
31-May-19	14-Jun-19	14	15,931	1138	Exceeded OC max. discharge rate of 609 m3/day
14-Jun-19	27-Jun-19	13	7,506	577	
27-Jun-19	11-Jul-19	14	8,842	632	Exceeded OC max. discharge rate of 609 m3/day
11-Jul-19	12-Jul-19	1	1,660	1660	Exceeded OC max. discharge rate of 609 m3/day
12-Jul-19	19-Jul-19	7	2,170	310	
19-Jul-19	23-Jul-19	4	332	83	
23-Jul-19	26-Jul-19	3	2,332	777	Exceeded OC max. discharge rate of 609 m3/day
26-Jul-19	1-Aug-19	6	0	0	
01-Aug-19	7-Aug-19	6	0	0	
07-Aug-19	16-Aug-19	9	5,043	560	
16-Aug-19	19-Aug-19	3	3,768	1256	Exceeded OC max. discharge rate of 609 m3/day
19-Aug-19	22-Aug-19	3	5,853	1951	Exceeded OC max. discharge rate of 609 m3/day
22-Aug-19	23-Aug-19	1	1,097	1097	Exceeded OC max. discharge rate of 609 m3/day
23-Aug-19	26-Aug-19	3	3,305	1102	Exceeded OC max. discharge rate of 609 m3/day
26-Aug-19	6-Sep-19	11	12,240	1113	Exceeded OC max. discharge rate of 609 m3/day
06-Sep-19	26-Sep-19	20	7,884	394	
		118	77,964	661	Exceeded OC avg. discharge rate of 400 m3/day

